MEMS Tabanlı Elektrotermal Mikro-Aktüatörün Tasarımı ve Sonlu Elemanlar Analizi
Yıl 2020,
Cilt: 7 Sayı: 3, 1017 - 1024, 30.09.2020
Osman Ülkir
,
İshak Ertugrul
,
Nihat Akkuş
Öz
Bu makale, COMSOL yazılımı ile tasarlanan mikro elektromekanik sistem (MEMS) tabanlı elektrotermal mikro-aktüatörün sonlu elemanlar analizi çalışmasını sunmaktadır. Elektrotermal aktüatörler, elektrostatik aktüatörlere kıyasla daha büyük yer değiştirmeler sağlamaktadır. Termal aktüatörler iki tiptir. Bimorf termal aktüatör ve tek malzemeden yapılmış elektrotermal uyumlu (ETU) aktüatör. Bimorf aktüatörler, iki veya daha fazla farklı malzemeden yapılmış kompozit yapıdır. Bu çalışmada ETU tipi termal aktüatör kullanılmıştır. İki yönde hareket edebilen mikro-aktüatör, belirlenen kriterlere göre tasarlanmış ve analizler gerçekleştirilmiştir. Sonlu elemanlar analizi için mikro-aktüatöre iletken özelliği olan polycrystalline silicon malzeme ataması yapılmıştır. Bu analiz mikro-aktüatörün fabrikasyonu ve karakterizasyonu işlemleri öncesinde büyük öneme sahiptir. Analiz sürecinde gerilim uygulanarak mikro-aktüatörün hareket etmesi sağlanmıştır. Çalışma gerilimi, 1V’luk artışlarla 0V’dan mikro-aktüatörün yapısında kırılmalar ve bozulmalar gözlemlenene kadar artırılmıştır. Mikro-aktüatör 5V gerilime kadar dayanabilmiştir. Bu gerilim değerinden sonra mikro-aktüatörün yapısında kırılmalar ve bozulmalar meydana gelmiştir. Analizler sonucunda maksimum yer değiştirme 5V gerilim uygulandığında 4.18 µm olarak ölçülmüştür. Sonuç olarak, elektrotermal mikro-aktüatör tasarımı çift yönlü olduğundan maksimum yer değiştirme 8.36 µm olarak tespit edilmiştir.
Kaynakça
- [1] Mineta, T., Yanatori, H., Hiyoshi, K., Tsuji, K., Ono, Y., Abe, K., Tactile Display MEMS Device with SU8 Micro-pin and Spring on SMA Film Actuator Array, 19th International Conference on Solid-State Sensors, Actuators and Microsystems, 2017, 2031-2034.
[2] Singh, J., Kumar, A., Chelvane, J. A., Stress Compensated MEMS Magnetic Actuator Based on Magnetostrictive Fe65Co35 Thin Films, Sensors and Actuators A: Physical, 2019, 294 (1), 54-60.
[3] Çiftçi, H., ERSOY, B. Adsorption of Cr (VI) Ions on Magnetite Nano-Particles (Fe3O4): Kinetic and Thermodynamic Studies. El-Cezeri Journal of Science and Engineering, 2016, 3(3), 417-427.
[4] Rodríguez, G. A. A., Suhard, S., Rossi, C., Esteve, D., Fau, P., Sabo-Etienne, S., Chaudret, B., A Microactuator Based on the Decomposition of an Energetic Material for Disposable lab-on-chip Applications: Fabrication and Test, Journal of Micromechanics and Microengineering, 2008, 19 (1), 12-25.
[5] Wang, J., Zhang, W., Wang, L., Shen, R., Xu, X., Ye, J., Chao, Y., Novel Approach to the Preparation of Organic Energetic Film for Microelectromechanical Systems and Microactuator Applications. ACS applied materials & interfaces, 2014, 6 (14), 10992-10996.
[6] Flick, E., Belski, A., Li, W., Steinhoff, G., & Gatzen, H. H., Magnetic Microactuator for Controlling Nanoparticles in gene Delivery Applications. IEEE Transactions on Magnetics, 2009, 45 (10), 4869-4872.
[7] Biswas, P. K., Bannerjee, S., Analysis of UI and UU type rail and actuator used in electromagnetic levitation system using FEM software, International Journal of Emerging Technology and Advanced Engineering, 2012, 2 (5), 32-39.
[8] Elbuken, C., Gui, L., Ren, C. L., Yavuz, M., Khamesee, M. B., Design and Analysis of a Polymeric Photo-Thermal Microactuator, Sensors and Actuators A: Physical, 2008, 147 (1), 292-299.
[9] Lau, G. K., Goosen, J. F., van Keulen, F., Duc, T. C., Sarro, P. M., Polymeric Thermal Microactuator with Embedded Silicon Skeleton: Part I—Design and Analysis, Journal of Microelectromechanical systems, 2008, 17(4), 809-822.
[10] Seng, A. B., Dahari, Z., Sidek, O., Miskam, M. A., Design and Analysis of Thermal Micro-Actuator, European Journal of Scientific Research, 2009, 35 (2), 281-292.
[11] Karbasi, S. M., Shamshirsaz, M., Naraghi, M., Maroufi, M., Optimal Design Analysis of Electrothermally Driven Microactuators. Microsystem technologies, 2010, 16 (7), 1065-1071.
[12] Dong, Y. A., Raafat, Mansour,, Design and Modeling of MEMS Bidirectional Vertical Thermal Actuator, J. Micromech. Microeng, 2004, 14 (2), 841-845.
[13] Ching, L., Meng, Lin., Chang, L., Modeling and Analysis of Electro Thermalactuators, Journal of the Chinese Institute of Engineers, 2009, 32 (3), 351-360.
[14] Nikolas, C., Luke, P. L., Electrothermally Activated SU-8 Microgripper for Single Manipulation in Solution”, J. Micro electro Mechanical Syst., 2005, 35 (4), 857-863.
[15] Aravind, A., Naryana, R., Analyssi of Hybrid Electrothermal Mechanical Microactuators with Integrated Electrothermal and Electrostatic Actuation, J. Micro electro Mechanical Syst., 2009, 18 (3), 1126-1136.
[16] Wu, L., Xie, H., A Large Vertical Displacement Electrothermal Bimorph Microactuator with very Small Lateral Shift, Sensors and Actuators A: Physical, 2008, 145 (2), 371-379.
[17] Huang, H., Wang, L., Wu, Y., Design and Experimental Research of a Rotary Micro-Actuator Based on a Shearing Piezoelectric Stack, Micromachines, 2019, 10 (2), 96-110.