Araştırma Makalesi
BibTex RIS Kaynak Göster

Tam ve Kısmi Kapanma Stratejilerinin COVID-19 Salgını Üzerinden Karşılaştırılması

Yıl 2021, Cilt: 8 Sayı: 2, 1024 - 1034, 31.05.2021
https://doi.org/10.31202/ecjse.909927

Öz

COVID-19 gibi bulaşıcı hastalıkların durdurulması veya en azından bulaşma hızının yavaşlatılıp sağlık sistemine yer ve zaman kazandırılması için kullanılan çeşitli müdahale stratejileri bulunmaktadır. Bunlardan en önemli ve sık kullanılanlarından biri de insanların toplu olarak bulunup, bulaş şansını yüksek oranda artırdıkları okul, iş yeri, alışveriş merkezi, restoran vb. yerlerin belirli süreler için kapatılmasıdır. Kapanmanın kapsamının ve zamanının uygun şekilde belirlenmesi hem vaka sayılarının hem de kapanmanın olumsuz etkilerinin azaltılması bakımından büyük önem taşımaktadır. Bu çalışmamızda, okul ve iş yerlerinin, salgının başlangıcına ve tepe noktasına yakın zamanlarda, tam ve kısmi kapanmasını, vaka sayıları ve toplam kapalı gün sayıları üzerinden karşılaştıracağız. Stratejileri test edeceğimiz salgın, stokastik ağ (network) temelli SIR (Korunmasız-Hasta-İyileşmiş) ile modellenmiştir. Salgın şiddeti (attack rate), 6 farklı ülkenin aktüel COVID-19 vaka sayılarına göre hesaplanmıştır. Biri baz senaryo olma üzere, salgının farklı zamanlarında uygulanan tam ve kısmi kapanmaları içeren toplam 5 senaryo, 30’ar koşumda test edilmiştir. Sonuçlara bakıldığında, kısmi kapanmanın tam kapanmaya göre vaka sayılarını önemli ölçüde azalttığı görülmüştür. Kısmi kapanmada, okul ve iş yerlerindeki kapanma uygulamanın ilk başladığı günden salgının sonuna kadar devam etmesine rağmen, toplam kapalı gün sayısı, tam kapanma sonucu oluşan kapalı gün sayısına göre çok daha düşük çıkmıştır.

Kaynakça

  • Demirbilek M., “YAYsim: Salgın Modelleme ve Karar Destek Sistemi” Bilecik Şeyh Edebali Üniversitesi Fen Bilim. Derg., 2020, 7(1), 104–112.
  • Worldometers.info, https://www.worldometers.info/coronavirus/, 1 Mart 2020.
  • Dong E., Du H., and Gardner L., “An interactive web-based dashboard to track COVID-19 in real time,” Lancet Infect. Dis., 2020, 20(5), 533–534.
  • Atalan A., “Is the lockdown important to prevent the COVID-9 pandemic? Effects on psychology, environment and economy-perspective” Ann. Med. Surg., 2020, 56, 38–42.
  • Maria, N., Zaid, A., Catrin, S., Ahmed, K., Ahmed, A. J., Christos, I., ... & Riaz, A. "The socio-economic implications of the coronavirus pandemic (COVID-19): A review.", International Journal of Surgery, 2020, 78, 185-193.
  • Karataş M., “COVID-19 Pandemisinin Toplum Psikolojisine Etkileri ve Eğitime Yansımaları” J. Turkish Stud., 2020, 15(4), 1–13.
  • Ourworldindata.info, https://ourworldindata.org/covid-school-workplace-closures/, 1 Mart 2020.
  • Keskin M. ve Özer Kaya D., “COVID-19 Sürecinde Öğrencilerin Web Tabanlı Uzaktan Eğitime Yönelik Geri Bildirimlerinin Değerlendirilmesi”, İzmir Kâtip Çelebi Üniversitesi Sağlık Bilim. Fakültesi Derg., 2020, 5(2), 59–67.
  • Kermack W. O. and McKendrick A. G., “A Contribution to the Mathematical Theory of Epidemics,” Proc. R. Soc. A Math. Phys. Eng. Sci., 1927, 115(772), 700–721.
  • Hethcote H. W., “The mathematical models of diseases”, 2000, 42(4), 599–653.
  • Medlock J. and Galvani A. P., “Optimizing influenza vaccine distribution” Science, 2009, 325(5948), 1705–1708.
  • Craig B. R., Phelan T., Siedlarek J. P., and Steinberg J., “Improving Epidemic Modeling with Networks” Econ. Comment. (Federal Reserv. Bank Cleveland), 2020, 1–8.
  • Calvó-Armengol A. and Jackson M. O., “Networks in labor markets: Wage and employment dynamics and inequality” J. Econ. Theory, 2007, 132(1), 27–46.
  • Chaney T., “The network structure of international trade”, Am. Econ. Rev., 2014, 104(11), 3600–3634.
  • Elliott M., Golub B., and Jackson M. O., “Financial networks and contagion”, American Economic Review, 2014, 104(10), 3115–3153.
  • Walters C. E., Meslé M. M. I., and Hall I. M., “Modelling the global spread of diseases: A review of current practice and capability” Epidemics, 2018, 25, 1–8.
  • Prieto D. M., Das T. K., Savachkin A. A., Uribe A., Izurieta R., and Malavade S., “A systematic review to identify areas of enhancements of pandemic simulation models for operational use at provincial and local levels”, BMC Public Health, 2012, 12(1), 251.
  • Knipl D. H. and Röst G., “Modelling the strategies for age specific vaccination scheduling during influenza pandemic outbreaks”, Math. Biosci. Eng., 2011, 8(1), 123–139.
  • Matrajt L. and Longini I. M., “Optimizing vaccine allocation at different points in time during an epidemic”, PLoS One, 2010, 5(11), 1-11.
  • Lee S., Golinski M., and Chowell G., “Modeling Optimal Age-Specific Vaccination Strategies Against Pandemic Influenza”, Bull. Math. Biol., 2012, 74(4), 958–980.
  • Shim E., “Prioritization of delayed vaccination for pandemic influenza” Math. Biosci. Eng., 2011, 8(1), 95–112.
  • Chao D. L., Halloran M. E., Obenchain V. J., and Longini I. M., “FluTE, a publicly available stochastic influenza epidemic simulation model” PLoS Comput. Biol., 2010, 6(1), 1-8.
  • Hladish T., Melamud E., Barrera L. A., Galvani A., and Meyers L. A., “EpiFire: An open source C++ library and application for contact network epidemiology” BMC Bioinformatics, 2012, 13(76), 1-12.
  • Liu S., Poccia S., Candan K. S., Chowell G., and Sapino M. L., “EpiDMS: Data management and analytics for decision-making from epidemic spread simulation ensembles”, J. Infect. Dis., 2016, 214, 427–432.
  • V.D. Broeck W., Gioannini C., Gonçalves B., Quaggiotto M., Colizza V., and Vespignani A., “The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale” BMC Infect. Dis., 2011, 11(37), 1-14.
  • Grefenstette, J. J., Brown, S. T., Rosenfeld, R., DePasse, J., Stone, N. T., Cooley, P. C., ... & Burke, D. S., "FRED (A Framework for Reconstructing Epidemic Dynamics): an open-source software system for modeling infectious diseases and control strategies using census-based populations.", BMC public health, 2013, 13(1), 1-14.

Comparison of Complete and Partial Lockdown Strategies on COVID-19 Pandemic

Yıl 2021, Cilt: 8 Sayı: 2, 1024 - 1034, 31.05.2021
https://doi.org/10.31202/ecjse.909927

Öz

Some intervention strategies exist to stop or at least slow down spread pace of infectious diseases such as COVID-19 for providing available time and space to healthcare systems. One of most widespread intervention strategies is to shut down some places such as schools, workplaces, shopping malls, restaurants, etc. where individuals crowd and the chance of infection significantly rises for a while. It is really important to determine duration and scope of the closure strategy appropriately to decrease the negative effect of the closure and the number of cases. In this study, we compare full and partial lockdown strategies applied around the beginning and middle of the pandemic in terms of the number of cases and close days. The pandemic we test the strategies is modelled with a stochastic SIR (Susceptible-Infectious-Recovered) network model. The attack rate is calculated based on the number of COVID-19 related cases in six countries. With one baseline scenario, total 5 scenarios generated based full and partial lockdown strategies applied in different times during the pandemic are tested for 30 trials. According to results, the partial lockdown significantly decreases the number of cases compared to the full lockdown. Moreover, the number of closed days for schools and workplaces in the partial lockdown is much lower than the numbers in the full lockdown even though school and workplace closures continue until the end of the pandemic once they start in the partial lockdown.

Kaynakça

  • Demirbilek M., “YAYsim: Salgın Modelleme ve Karar Destek Sistemi” Bilecik Şeyh Edebali Üniversitesi Fen Bilim. Derg., 2020, 7(1), 104–112.
  • Worldometers.info, https://www.worldometers.info/coronavirus/, 1 Mart 2020.
  • Dong E., Du H., and Gardner L., “An interactive web-based dashboard to track COVID-19 in real time,” Lancet Infect. Dis., 2020, 20(5), 533–534.
  • Atalan A., “Is the lockdown important to prevent the COVID-9 pandemic? Effects on psychology, environment and economy-perspective” Ann. Med. Surg., 2020, 56, 38–42.
  • Maria, N., Zaid, A., Catrin, S., Ahmed, K., Ahmed, A. J., Christos, I., ... & Riaz, A. "The socio-economic implications of the coronavirus pandemic (COVID-19): A review.", International Journal of Surgery, 2020, 78, 185-193.
  • Karataş M., “COVID-19 Pandemisinin Toplum Psikolojisine Etkileri ve Eğitime Yansımaları” J. Turkish Stud., 2020, 15(4), 1–13.
  • Ourworldindata.info, https://ourworldindata.org/covid-school-workplace-closures/, 1 Mart 2020.
  • Keskin M. ve Özer Kaya D., “COVID-19 Sürecinde Öğrencilerin Web Tabanlı Uzaktan Eğitime Yönelik Geri Bildirimlerinin Değerlendirilmesi”, İzmir Kâtip Çelebi Üniversitesi Sağlık Bilim. Fakültesi Derg., 2020, 5(2), 59–67.
  • Kermack W. O. and McKendrick A. G., “A Contribution to the Mathematical Theory of Epidemics,” Proc. R. Soc. A Math. Phys. Eng. Sci., 1927, 115(772), 700–721.
  • Hethcote H. W., “The mathematical models of diseases”, 2000, 42(4), 599–653.
  • Medlock J. and Galvani A. P., “Optimizing influenza vaccine distribution” Science, 2009, 325(5948), 1705–1708.
  • Craig B. R., Phelan T., Siedlarek J. P., and Steinberg J., “Improving Epidemic Modeling with Networks” Econ. Comment. (Federal Reserv. Bank Cleveland), 2020, 1–8.
  • Calvó-Armengol A. and Jackson M. O., “Networks in labor markets: Wage and employment dynamics and inequality” J. Econ. Theory, 2007, 132(1), 27–46.
  • Chaney T., “The network structure of international trade”, Am. Econ. Rev., 2014, 104(11), 3600–3634.
  • Elliott M., Golub B., and Jackson M. O., “Financial networks and contagion”, American Economic Review, 2014, 104(10), 3115–3153.
  • Walters C. E., Meslé M. M. I., and Hall I. M., “Modelling the global spread of diseases: A review of current practice and capability” Epidemics, 2018, 25, 1–8.
  • Prieto D. M., Das T. K., Savachkin A. A., Uribe A., Izurieta R., and Malavade S., “A systematic review to identify areas of enhancements of pandemic simulation models for operational use at provincial and local levels”, BMC Public Health, 2012, 12(1), 251.
  • Knipl D. H. and Röst G., “Modelling the strategies for age specific vaccination scheduling during influenza pandemic outbreaks”, Math. Biosci. Eng., 2011, 8(1), 123–139.
  • Matrajt L. and Longini I. M., “Optimizing vaccine allocation at different points in time during an epidemic”, PLoS One, 2010, 5(11), 1-11.
  • Lee S., Golinski M., and Chowell G., “Modeling Optimal Age-Specific Vaccination Strategies Against Pandemic Influenza”, Bull. Math. Biol., 2012, 74(4), 958–980.
  • Shim E., “Prioritization of delayed vaccination for pandemic influenza” Math. Biosci. Eng., 2011, 8(1), 95–112.
  • Chao D. L., Halloran M. E., Obenchain V. J., and Longini I. M., “FluTE, a publicly available stochastic influenza epidemic simulation model” PLoS Comput. Biol., 2010, 6(1), 1-8.
  • Hladish T., Melamud E., Barrera L. A., Galvani A., and Meyers L. A., “EpiFire: An open source C++ library and application for contact network epidemiology” BMC Bioinformatics, 2012, 13(76), 1-12.
  • Liu S., Poccia S., Candan K. S., Chowell G., and Sapino M. L., “EpiDMS: Data management and analytics for decision-making from epidemic spread simulation ensembles”, J. Infect. Dis., 2016, 214, 427–432.
  • V.D. Broeck W., Gioannini C., Gonçalves B., Quaggiotto M., Colizza V., and Vespignani A., “The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale” BMC Infect. Dis., 2011, 11(37), 1-14.
  • Grefenstette, J. J., Brown, S. T., Rosenfeld, R., DePasse, J., Stone, N. T., Cooley, P. C., ... & Burke, D. S., "FRED (A Framework for Reconstructing Epidemic Dynamics): an open-source software system for modeling infectious diseases and control strategies using census-based populations.", BMC public health, 2013, 13(1), 1-14.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mustafa Demirbilek 0000-0002-1520-2882

Yayımlanma Tarihi 31 Mayıs 2021
Gönderilme Tarihi 5 Nisan 2021
Kabul Tarihi 25 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 2

Kaynak Göster

IEEE M. Demirbilek, “Tam ve Kısmi Kapanma Stratejilerinin COVID-19 Salgını Üzerinden Karşılaştırılması”, ECJSE, c. 8, sy. 2, ss. 1024–1034, 2021, doi: 10.31202/ecjse.909927.