Araştırma Makalesi
BibTex RIS Kaynak Göster

Stability Analyses of a Slope Reinforced with Piles Subjected to Static and Dynamic Loading Conditions

Yıl 2021, Cilt: 8 Sayı: 3, 1360 - 1371, 30.09.2021
https://doi.org/10.31202/ecjse.929429

Öz

This paper focuses on a stability analysis related to a highway constructed on a slope with high shear potential supported by the piles. For this purpose, a series of two-dimensional simulations were carried out by employing the finite element method. In the study, in order to provide the current state of topography, a numerical model was created based on data obtained from field and laboratory tests. It is aimed to define the safety factor of a slope under both static and dynamic loads, and that value was calculated for the following three cases: (i) for the slope unsupported by the piles subjected to static loading, (ii) for the slope supported by the piles subjected to static loading, (iii) for the slope supported by the piles subjected to dynamic loading. The numerical results indicate that it is a good approach to be used the piles to enhance the stability of the slope even though dynamic loading brings about to decline in the slope safety factor. Plus, the relevant value was determined to be 1.446 in the second case explained above while the same value was calculated to be 1.104 in the third case. Therefore, it is understood that the dynamic loads caused by the vehicles should be considered in the design of these kinds of problems, and the improvement method should be evaluated in detail.

Teşekkür

The authors would like to thank Limit Technical Investigation Company for the supports which are required to be able to carry out field and laboratory tests.

Kaynakça

  • [1]. Lin, H.D., Wang, W.C., Li, A.J., “Investigation of Dilatancy Angle Effects on Slope Stability Using the 3D Finite Element Method Strength Reduction Technique”, Computers and Geotechnics, 2020, 118: 103295.
  • [2]. Griffiths, D.V., Lane P.A., “Slope Stability Analysis by Finite Elements”, Géotechnique, 1999, 49(3): 387-403.
  • [3]. Salunkhe, D.P., Bartakke, R.N., Chvan, G., Kothavale, P.R., “An Overview on Methods for Slope Stability Analysis”, International Journal of Engineering Research and Technology, 2017, 6(3): 528-535.
  • [4]. Rabie, M., “Comparison Study between Traditional and Finite Element Methods for Slopes under Heavy Rainfall”, HBRC Journal, 2014, 10(2): 160-168.
  • [5]. Ng, C.W., Zhang, L.M., Ho, K.K., “Influence of Laterally Loaded Sleeved Piles and Pile Groups on Slope Stability”, Canadian Geotechnical Journal, 2001, 38(3): 553-566.
  • [6]. Kelesoglu, M.K., “The Evaluation ff Three-Dimensional Effects on Slope Stability by the Strength Reduction Method”, KSCE Journal of Civil Engineering, 2015, 20(1): 229-242.
  • [7]. Li, X., He, S., Luo, Y., Wu, Y., “Numerical Studies of the Position of Piles in Slope Stabilization”, Geomechanics and Geoengineering, 2011, 6(3): 209-215.
  • [8]. Ho, I.H., “Three-Dimensional Finite Element Analysis for Soil Slopes Stabilisation Using Piles, Geomechanics and Geoengineering”, 2017, 12(4): 234-249.
  • [9]. Asakereh, A., Ghazavi, M., Moghaddas Tafreshi, S.N., “Cyclic Response of Footing on Geogrid-Reinforced Sand with Void”, Soils and Foundations, 2013, 53(3): 363-374.
  • [10]. Zhu, F., Zhang, W., Sun, M., “A New Calculation Method for the Soil Slope Safety Factor”, Mathematical Problems in Engineering”, 2017, 217: 3569826.
  • [11]. Schanz, T., Vermeer, P.A., Bonnier, P.G., “The Hardening Soil Model: Formulation and Verification”, International Symposium Beyond 2000 in Computational Geotechnics, Amsterdam, 281-296, (1999).
  • [12]. Cakir, T., “Evaluation of the Effect of Earthquake Frequency Content on Seismic Behaviour of Cantilever Retaining Wall Including Soil–Structure Interaction”, Soil Dynamics and Earthquake Engineering, 2013, 45: 96-111.
  • [13]. Liu, Y., Glass, G., “Effects of Mesh Density on Finite Element Analysis”, SAE Technical Paper, 2013, 2013-01-1375.
  • [14]. Mazzotta, V., Brunesi, E., Nascimbene, R., “Numerical Modeling and Seismic Analysis of Tall Steel Buildings with Braced Frame Systems”, Periodica Polytechnica Civil Engineering, 2017, 61(2): 196-208.
  • [15]. Brinkgreve, R.B.J., Kumarswamy, S., Swolfs, W.M., “Plaxis 2D Reference Manual”, Delft, Netherlands: Plaxis bv (2015).
  • [16]. Tafreshi, S.M. Dawson, A.R., “Behavior of Footings on Reinforced Sand Subjected to Repeated Loading–Comparing Use of 3D and Planar Geotextile”, Geotextiles and Geomembranes, 2010, 28(5): 434-447.
  • [17]. Tafreshi, S.M. Dawson, A.R., “A Comparison of Static and Cyclic Loading Responses of Foundations on Geocell-Reinforced Sand”, Geotextiles and Geomembranes, 2012, 32: 55-68.

Statik ve Dinamik Yükleme Koşullarına Maruz Kazıklarla Güçlendirilen Bir Şevin Stabilite Analizleri

Yıl 2021, Cilt: 8 Sayı: 3, 1360 - 1371, 30.09.2021
https://doi.org/10.31202/ecjse.929429

Öz

Bu makale, kazıklarla desteklenen yüksek kayma potansiyeline sahip bir şev üzerine inşa edilmiş karayolu inşaatının stabilite analizi üzerine odaklanmaktadır. Bu amaçla, sonlu elemanlar yöntemi kullanılarak bir dizi iki boyutlu simülasyonlar gerçekleştirilmiştir. Çalışmada, topografyanın mevcut durumunu yansıtmak için saha ve laboratuvar testlerinden elde edilen verilerden faydalanılarak sayısal bir model oluşturulmuştur. Hem statik hem de dinamik yükler altında bir şevin güvenlik faktörünün tanımlanması amaçlanmış ve bu değer şu üç durum için hesaplanmıştır: (i) statik yüklemeye maruz kalan kazıkların desteklemediği şev için, (ii) statik yüklemeye maruz kalan kazıkların desteklediği şev için (iii) dinamik yüklemeye maruz kalan kazıkların desteklediği şev için. Sayısal sonuçlar, dinamik yüklemenin şev güvenlik sayısında düşüşe neden olsa da şev stabilitesini artırmak için kazıkların kullanılmasının iyi bir yaklaşım olduğunu göstermektedir. Ayrıca, yukarıda açıklanan ikinci durumda ilgili değer 1.446 olarak belirlenirken, üçüncü durumda aynı değer 1.104 olarak hesaplanmıştır. Bu nedenle, bu tür problemlerin tasarımında taşıtların neden olduğu dinamik yüklerin dikkate alınması ve iyileştirme yönteminin detaylı bir şekilde değerlendirilmesi gerektiği anlaşılmaktadır.

Kaynakça

  • [1]. Lin, H.D., Wang, W.C., Li, A.J., “Investigation of Dilatancy Angle Effects on Slope Stability Using the 3D Finite Element Method Strength Reduction Technique”, Computers and Geotechnics, 2020, 118: 103295.
  • [2]. Griffiths, D.V., Lane P.A., “Slope Stability Analysis by Finite Elements”, Géotechnique, 1999, 49(3): 387-403.
  • [3]. Salunkhe, D.P., Bartakke, R.N., Chvan, G., Kothavale, P.R., “An Overview on Methods for Slope Stability Analysis”, International Journal of Engineering Research and Technology, 2017, 6(3): 528-535.
  • [4]. Rabie, M., “Comparison Study between Traditional and Finite Element Methods for Slopes under Heavy Rainfall”, HBRC Journal, 2014, 10(2): 160-168.
  • [5]. Ng, C.W., Zhang, L.M., Ho, K.K., “Influence of Laterally Loaded Sleeved Piles and Pile Groups on Slope Stability”, Canadian Geotechnical Journal, 2001, 38(3): 553-566.
  • [6]. Kelesoglu, M.K., “The Evaluation ff Three-Dimensional Effects on Slope Stability by the Strength Reduction Method”, KSCE Journal of Civil Engineering, 2015, 20(1): 229-242.
  • [7]. Li, X., He, S., Luo, Y., Wu, Y., “Numerical Studies of the Position of Piles in Slope Stabilization”, Geomechanics and Geoengineering, 2011, 6(3): 209-215.
  • [8]. Ho, I.H., “Three-Dimensional Finite Element Analysis for Soil Slopes Stabilisation Using Piles, Geomechanics and Geoengineering”, 2017, 12(4): 234-249.
  • [9]. Asakereh, A., Ghazavi, M., Moghaddas Tafreshi, S.N., “Cyclic Response of Footing on Geogrid-Reinforced Sand with Void”, Soils and Foundations, 2013, 53(3): 363-374.
  • [10]. Zhu, F., Zhang, W., Sun, M., “A New Calculation Method for the Soil Slope Safety Factor”, Mathematical Problems in Engineering”, 2017, 217: 3569826.
  • [11]. Schanz, T., Vermeer, P.A., Bonnier, P.G., “The Hardening Soil Model: Formulation and Verification”, International Symposium Beyond 2000 in Computational Geotechnics, Amsterdam, 281-296, (1999).
  • [12]. Cakir, T., “Evaluation of the Effect of Earthquake Frequency Content on Seismic Behaviour of Cantilever Retaining Wall Including Soil–Structure Interaction”, Soil Dynamics and Earthquake Engineering, 2013, 45: 96-111.
  • [13]. Liu, Y., Glass, G., “Effects of Mesh Density on Finite Element Analysis”, SAE Technical Paper, 2013, 2013-01-1375.
  • [14]. Mazzotta, V., Brunesi, E., Nascimbene, R., “Numerical Modeling and Seismic Analysis of Tall Steel Buildings with Braced Frame Systems”, Periodica Polytechnica Civil Engineering, 2017, 61(2): 196-208.
  • [15]. Brinkgreve, R.B.J., Kumarswamy, S., Swolfs, W.M., “Plaxis 2D Reference Manual”, Delft, Netherlands: Plaxis bv (2015).
  • [16]. Tafreshi, S.M. Dawson, A.R., “Behavior of Footings on Reinforced Sand Subjected to Repeated Loading–Comparing Use of 3D and Planar Geotextile”, Geotextiles and Geomembranes, 2010, 28(5): 434-447.
  • [17]. Tafreshi, S.M. Dawson, A.R., “A Comparison of Static and Cyclic Loading Responses of Foundations on Geocell-Reinforced Sand”, Geotextiles and Geomembranes, 2012, 32: 55-68.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mustafa Tolun 0000-0002-2073-8796

Buse Ün 0000-0003-4090-1519

Buse Emirler 0000-0002-0234-7177

Abdulazim Yıldız 0000-0002-6755-1902

Yayımlanma Tarihi 30 Eylül 2021
Gönderilme Tarihi 29 Nisan 2021
Kabul Tarihi 13 Temmuz 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 3

Kaynak Göster

IEEE M. Tolun, B. Ün, B. Emirler, ve A. Yıldız, “Stability Analyses of a Slope Reinforced with Piles Subjected to Static and Dynamic Loading Conditions”, El-Cezeri Journal of Science and Engineering, c. 8, sy. 3, ss. 1360–1371, 2021, doi: 10.31202/ecjse.929429.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png