Araştırma Makalesi
BibTex RIS Kaynak Göster

Uçucu Kül Tabanlı Geopolimer SIFCON’ların Eğilme Dayanımı ve Tokluk Özelliklerinin İncelenmesi

Yıl 2022, Cilt: 9 Sayı: 1, 311 - 324, 31.01.2022
https://doi.org/10.31202/ecjse.973668

Öz

Geopolimerler silis ve alümina bakımından zengin toz malzemelerin yüksek alkaliniteye sahip çözeltilerle birlikte kullanılması ile üretilen çevre dostu yapı malzemeleridir. Farklı uygulamalar için geliştirilen kompozit malzemelerin çekme dayanımları ve enerji yutma kapasitelerini arttırmak için sürekli veya süreksiz liflerle matris fazının takviye edilmesi uzun yıllardır uygulanmaktadır. SIFCON kompozitler de bunlardan biri olup liflerin kalıba yerleştirilmesi ve devamında çok akıcı matris fazının lifler arasındaki boşluğu doldurması yöntemi ile üretilmektedir. Ancak geopolimer matrisin SIFCON üretiminde kullanımı hakkında araştırmalara ihtiyaç duyulmaktadır. Bu çalışmada hacimce %5 çelik lif içeren uçucu kül tabanlı geopolimer SIFCON kompozitler üretilmiş ve bunların eğilme dayanımları, basınç dayanımları ve tokluk özellikleri hem yüksek sıcaklığa maruz bırakılmamış, hem de 900°C etkisine maruz bırakılmış numuneler üzerinde incelenmiştir. Ayrıca, geopolimer SIFCON ile benzer eğilme dayanımına sahip çimento tabanlı geleneksel SIFCON kompozitler kıyaslama amacı ile kullanılmıştır. Çalışmanın sonucunda uçucu kül tabanlı geopolimer SIFCON’ların yüksek sıcaklık etkisi sonrasında çimento tabanlı SIFCON’lardan daha yüksek eğilme dayanımı ve tokluk değerlerine sahip olduğu tespit edilmiştir. Ayrıca benzer eğilme dayanımlarında geopolimer SIFCON’ların daha yüksek basınç dayanımına ulaştıkları görülmüştür.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

119M950

Teşekkür

Bu çalışmanın uçucu kül tabanlı geopolimer harçlar bölümü “119M950” proje numarası ile TÜBİTAK tarafından desteklenmiştir. Desteklerinden ötürü TÜBİTAK’a teşekkürlerimizi sunarız.

Kaynakça

  • Izumi Y., Iizuka A., Ho H. J., “Calculation of greenhouse gas emissions for a carbon recycling system using mineral carbon capture and utilization technology in the cement industry”, J. Clean. Prod., 2021, 312: 127618. https://doi.org/10.1016/j.jclepro.2021.127618
  • Vikas G., Rao T. D. G., “Setting time, workability and strength properties of alkali activated fly Ash and slag based geopolymer concrete activated with high silica modulus water glass”, Iran J. Sci. Technol. Trans. Civ. Eng., 2021. https://doi.org/10.1007/s40996-021-00598-8
  • Gülşan M. E., Alzeebaree R., Rasheed A. A., Niş A., Kurtoğlu A. E., “Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiber”, Constr. Build. Mater., 2019, 211:271–283. https://doi.org/10.1016/j.conbuildmat.2019.03.228
  • Görhan G., “Geopolimer harç özelliklerine metakaolin kalsinasyon sıcaklığının etkisi”, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 2020, 20: 83-89. Doi:10.35414/akufemubid.591117
  • Zhang Z. , Wang H., Provis J. L., “Quantitative study of the reactivity of fly ash in geopolymerization by FTIR”, J. Sustain. Cem.-Based Mater., 2012, 1(4): 154-166. https://doi.org/10.1080/21650373.2012.752620
  • Lloyd N. A., Rangan B. V., “Geopolymer concrete with fly ash”, Second International Conference on Sustainable Construction Materials and Technologies, Ancona, Italy, (2010).
  • Zhao J., Tong L., Li B., Chen T., Wang C., Yang G., Zheng Y., “Eco-friendly geopolymer materials: a review of performance improvement, potential application and sustainability assessment”, J. Clean. Prod., 2021, 307: 127085. https://doi.org/10.1016/j.jclepro.2021.127085
  • Yunsheng Z., Weı S., Zongjın L., “Impact behavior and microstructural characteristics of PVA fiber reinforced fly ash-geopolymer boards prepared by extrusion technique”, J. Mater. Sci., 2006, 41: 2787–2794. Doi:10.1007/s10853-006-6293-5
  • Midhun M. S., Rao T. D. G., Srikrishna T. C., “Mechanical and fracture properties of glass fiber reinforced geopolymer concrete”, Adv. Concr. Constr., 2018, 6 (1): 29-45. https://doi.org/10.12989/acc.2018.6.1.029
  • Ranjbar N., Mehrali M., Mehrali M., Alengaram U. J., Jumaat M. Z., “High tensile strength fly ash based geopolymer composite using copper coated micro steel fiber”, Constr. Build. Mater., 2016, 112: 629–638. http://dx.doi.org/10.1016/j.conbuildmat.2016.02.228
  • Mackenzie K. J. D., Welter M., “Geopolymer (aluminosilicate) composites: synthesis, properties and applications”, Advances in Ceramic Matrix Composites, Woodhead Publishing, United Kingdom, (2014). Doi: 10.1533/9780857098825.3.445
  • Rahman A. S., Jackson P., Radford D. W., “Improved toughness and delamination resistance in continuous fiber reinforced geopolymer composites via incorporation of nano-fillers”, Cem. Concr. Compos., 2020, 108: 103496. https://doi.org/10.1016/j.cemconcomp.2019.103496
  • Sukontasukkul P., Pongsopha P., Chindaprasirt P., Songpiriyakij S., “Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer”, Constr. Build. Mater., 2018, 161: 37–44. https://doi.org/10.1016/j.conbuildmat.2017.11.122
  • Gao X., Yu Q. L., Yu R., Brouwers H. J. H., “Evaluation of hybrid steel fiber reinforcement in high performance geopolymer composites”, Mater. Struct., 2017, 50 (165). Doi:10.1617/s11527-017-1030-x
  • Chi H. L., Louda P., Periyasamy A. P., Bakalova T., Kovacic V., “Flexural cehavior of carbon textile-reinforced geopolymer composite thin plate”, Fibers, 2018, 6 (87). doi:10.3390/fib6040087
  • Yan S., He P., Jia D., Yang Z., Duan X., Wang S., Zhou Y., “Effect of fiber content on the microstructure and mechanical properties of carbon fiber felt reinforced geopolymer composites”, Ceram. Int., 2016, 42: 7837–7843. http://dx.doi.org/10.1016/j.ceramint.2016.01.197
  • TS EN 459-2, Yapı kireci - Bölüm 2: Deney yöntemleri, (2012).
  • Cho Y. K., Yoo S. W., Jung S. H., Lee K. M., Kwon S. J., “Effect of Na2O content, SiO2/Na2O molar ratio, and curing conditions on the compressive strength of FA-based geopolymer”, Constr. Build. Mater., 2017 145: 253–260. http://dx.doi.org/10.1016/j.conbuildmat.2017.04.004
  • Duxson P., Provis J. L., Lukey G. C., Mallicoat S. W., Kriven W. M., van Deventer J. S. J., “Understanding the relationship between geopolymer composition, microstructure and mechanical properties”, Colloids Surf. A Physicochem. Eng. Asp., 2005, 269:47–58. doi:10.1016/j.colsurfa.2005.06.060

Investigation of Flexural Strength and Toughness of Fly Ash Based Geopolymer SIFCON

Yıl 2022, Cilt: 9 Sayı: 1, 311 - 324, 31.01.2022
https://doi.org/10.31202/ecjse.973668

Öz

Geopolymers are environmentally friendly construction materials produced by the use of silica and alumina-rich powder materials with high alkaline solutions. Reinforcing the matrix phase with continuous or discontinuous fibers has been applied for many years to increase the tensile strength and energy absorption capacity of composite materials developed for different applications. SIFCON composites are one of them, and they are produced by placing the fibers in the mold and then filling the mold with very fluid matrix phase. However, there is a need for research on the use of geopolymer matrix in SIFCON production. In this study, fly ash-based geopolymer SIFCON composites containing 5% by volume steel fibers were produced and their flexural strength, compressive strength and toughness properties were investigated on both samples that were not exposed to high temperature and exposed to 900°C. In addition, cement-based conventional SIFCON composites with similar flexural strengths with the geopolymer SIFCON were used for comparison. It was determined that the fly ash-based geopolymer SIFCON had higher flexural strength and toughness values than that of the cement-based SIFCON after exposing to high temperature. In addition, for a given flexural strength, geopolymer SIFCON showed a higher compressive strength than that of conventional SIFCON.

Proje Numarası

119M950

Kaynakça

  • Izumi Y., Iizuka A., Ho H. J., “Calculation of greenhouse gas emissions for a carbon recycling system using mineral carbon capture and utilization technology in the cement industry”, J. Clean. Prod., 2021, 312: 127618. https://doi.org/10.1016/j.jclepro.2021.127618
  • Vikas G., Rao T. D. G., “Setting time, workability and strength properties of alkali activated fly Ash and slag based geopolymer concrete activated with high silica modulus water glass”, Iran J. Sci. Technol. Trans. Civ. Eng., 2021. https://doi.org/10.1007/s40996-021-00598-8
  • Gülşan M. E., Alzeebaree R., Rasheed A. A., Niş A., Kurtoğlu A. E., “Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiber”, Constr. Build. Mater., 2019, 211:271–283. https://doi.org/10.1016/j.conbuildmat.2019.03.228
  • Görhan G., “Geopolimer harç özelliklerine metakaolin kalsinasyon sıcaklığının etkisi”, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 2020, 20: 83-89. Doi:10.35414/akufemubid.591117
  • Zhang Z. , Wang H., Provis J. L., “Quantitative study of the reactivity of fly ash in geopolymerization by FTIR”, J. Sustain. Cem.-Based Mater., 2012, 1(4): 154-166. https://doi.org/10.1080/21650373.2012.752620
  • Lloyd N. A., Rangan B. V., “Geopolymer concrete with fly ash”, Second International Conference on Sustainable Construction Materials and Technologies, Ancona, Italy, (2010).
  • Zhao J., Tong L., Li B., Chen T., Wang C., Yang G., Zheng Y., “Eco-friendly geopolymer materials: a review of performance improvement, potential application and sustainability assessment”, J. Clean. Prod., 2021, 307: 127085. https://doi.org/10.1016/j.jclepro.2021.127085
  • Yunsheng Z., Weı S., Zongjın L., “Impact behavior and microstructural characteristics of PVA fiber reinforced fly ash-geopolymer boards prepared by extrusion technique”, J. Mater. Sci., 2006, 41: 2787–2794. Doi:10.1007/s10853-006-6293-5
  • Midhun M. S., Rao T. D. G., Srikrishna T. C., “Mechanical and fracture properties of glass fiber reinforced geopolymer concrete”, Adv. Concr. Constr., 2018, 6 (1): 29-45. https://doi.org/10.12989/acc.2018.6.1.029
  • Ranjbar N., Mehrali M., Mehrali M., Alengaram U. J., Jumaat M. Z., “High tensile strength fly ash based geopolymer composite using copper coated micro steel fiber”, Constr. Build. Mater., 2016, 112: 629–638. http://dx.doi.org/10.1016/j.conbuildmat.2016.02.228
  • Mackenzie K. J. D., Welter M., “Geopolymer (aluminosilicate) composites: synthesis, properties and applications”, Advances in Ceramic Matrix Composites, Woodhead Publishing, United Kingdom, (2014). Doi: 10.1533/9780857098825.3.445
  • Rahman A. S., Jackson P., Radford D. W., “Improved toughness and delamination resistance in continuous fiber reinforced geopolymer composites via incorporation of nano-fillers”, Cem. Concr. Compos., 2020, 108: 103496. https://doi.org/10.1016/j.cemconcomp.2019.103496
  • Sukontasukkul P., Pongsopha P., Chindaprasirt P., Songpiriyakij S., “Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer”, Constr. Build. Mater., 2018, 161: 37–44. https://doi.org/10.1016/j.conbuildmat.2017.11.122
  • Gao X., Yu Q. L., Yu R., Brouwers H. J. H., “Evaluation of hybrid steel fiber reinforcement in high performance geopolymer composites”, Mater. Struct., 2017, 50 (165). Doi:10.1617/s11527-017-1030-x
  • Chi H. L., Louda P., Periyasamy A. P., Bakalova T., Kovacic V., “Flexural cehavior of carbon textile-reinforced geopolymer composite thin plate”, Fibers, 2018, 6 (87). doi:10.3390/fib6040087
  • Yan S., He P., Jia D., Yang Z., Duan X., Wang S., Zhou Y., “Effect of fiber content on the microstructure and mechanical properties of carbon fiber felt reinforced geopolymer composites”, Ceram. Int., 2016, 42: 7837–7843. http://dx.doi.org/10.1016/j.ceramint.2016.01.197
  • TS EN 459-2, Yapı kireci - Bölüm 2: Deney yöntemleri, (2012).
  • Cho Y. K., Yoo S. W., Jung S. H., Lee K. M., Kwon S. J., “Effect of Na2O content, SiO2/Na2O molar ratio, and curing conditions on the compressive strength of FA-based geopolymer”, Constr. Build. Mater., 2017 145: 253–260. http://dx.doi.org/10.1016/j.conbuildmat.2017.04.004
  • Duxson P., Provis J. L., Lukey G. C., Mallicoat S. W., Kriven W. M., van Deventer J. S. J., “Understanding the relationship between geopolymer composition, microstructure and mechanical properties”, Colloids Surf. A Physicochem. Eng. Asp., 2005, 269:47–58. doi:10.1016/j.colsurfa.2005.06.060
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Adil Gültekin 0000-0002-5267-5312

Kambiz Ramyar 0000-0003-2200-2691

Proje Numarası 119M950
Yayımlanma Tarihi 31 Ocak 2022
Gönderilme Tarihi 21 Temmuz 2021
Kabul Tarihi 4 Ekim 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 1

Kaynak Göster

IEEE A. Gültekin ve K. Ramyar, “Uçucu Kül Tabanlı Geopolimer SIFCON’ların Eğilme Dayanımı ve Tokluk Özelliklerinin İncelenmesi”, El-Cezeri Journal of Science and Engineering, c. 9, sy. 1, ss. 311–324, 2022, doi: 10.31202/ecjse.973668.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png