A Novel Approach to Prevention of Hello Flood Attack in IoT Using Machine Learning Algorithm
Yıl 2022,
Cilt: 9 Sayı: 4, 1529 - 1541, 31.12.2022
Serkan Gönen
,
Mehmet Ali Barışkan
,
Gökçe Karacayılmaz
,
Birkan Alhan
,
Ercan Nurcan Yılmaz
,
Harun Artuner
,
Erhan Sindiren
Öz
With the developments in information technologies, every area of our lives, from shopping to education, from health to entertainment, has transitioned to the cyber environment, defined as the digital environment. In particular, the concept of the Internet of Things (IoT) has emerged in the process of spreading the internet and the idea of controlling and managing every device based on IP. The fact that IoT devices are interconnected with limited resources causes users to become vulnerable to internal and external attacks that threaten their security. In this study, a Flood attack, which is an important attack type against IoT networks, is discussed. Within the scope of the analysis of the study, first of all, the effect of the flood attack on the system has been examined. Subsequently, it has been focused on detecting the at-tack through the K-means algorithm, a machine learning algorithm. The analysis results have been shown that the attacking mote where the flood attack has been carried out has been successfully detected. In this way, similar flood attacks will be detected as soon as possible, and the system will be saved from the attack with the most damage and will be activated as soon as possible.
Teşekkür
ICAIAME 2022 BAKÜ.
Kaynakça
- Lin, H., Bergmann, N. W., IoT privacy and security challenges for smart home environments. Information, 2016, 7(3), 44.
- Nawaratne, R., Alahakoon, D., De Silva, D., Chhetri, P., Chilamkurti, N., Self-evolving intelligent algorithms for facilitating data interoperability in IoT environments. Future Generation Computer Systems, 2018, 86, 421-432.
- Chouhan, P. K., McClean, S., Shackleton, M., Situation assessment to secure IoT applications. In 2018 Fifth International Conference on Internet of Things: Systems, Management and Security, 2018, pp. 70-77, IEEE.
- Ravi, N., Shalinie, S. M., Learning-driven detection and mitigation of DDoS attack in IoT via SDN-cloud architecture. IEEE Internet of Things Journal, 2020, 7(4), 3559-3570.
- Firouzi, F., Farahani, B., Weinberger, M., DePace, G., & Aliee, F. S., IoT fundamentals: definitions, architectures, challenges, and promises. In Intelligent internet of things 2020, pp. 3-50, Springer, Cham.
- Niraja, K. S., & Rao, S. S., A hybrid algorithm design for near real time detection cyber attacks from compromised devices to enhance IoT security. Materials Today: Proceedings, 2021
- Syed, N. F., Baig, Z., Ibrahim, A., & Valli, C., Denial of service attack detection through machine learning for the IoT. Journal of Information and Telecommunication, 2020, 4(4), 482-503.
- Ahmad, R., & Alsmadi, I., Machine learning approaches to IoT security: A systematic literature review. Internet of Things, 2021, 14.
- Lin, T., Deep Learning for IoT. In 2020 IEEE 39th International Performance Computing and Communications Conference (IPCCC), 2020, pp. 1-4, IEEE.
- Tyagi, H., Kumar, R., Attack and Anomaly Detection in IoT Networks Using Supervised Machine Learning Approaches. Rev. d'Intelligence Artif., 2021, 35(1), 11-21.
- Xiao, L., Wan, X., Lu, X., Zhang, Y., Wu, D., IoT security techniques based on machine learning: how do IoT devices use AI to enhance security? IEEE Signal Process, 2018, Mag. 35 (5), 41–49
- Stellios, I., Kotzanikolaou, P., Grigoriadis, C., Assessing IoT enabled cyber-physical attack paths against critical systems. Computers & Security, 2021,107, 102316.
- Yazdinejadna, A., Parizi, R. M., Dehghantanha, A., Karimipour, H., Federated learning for drone authentication. Ad Hoc Networks, 2021, 102574.
- Mandal, K., Rajkumar, M., Ezhumalai, P., Jayakumar, D., Yuvarani, R., Improved security using machine learning for IoT intrusion detection system. Materials Today: Proceedings, 2020.
- Singh, R., Singh, J., Singh, R., Fuzzy based advanced hybrid intrusion detection system to detect malicious nodes in wireless sensor networks. Wireless Communications and Mobile Computing, 2017.
- Cakir, S., Toklu, S., Yalcin, N., RPL Attack Detection and Prevention in the Internet of Things Networks Using a GRU Based Deep Learning. IEEE Access, 2020, 8, 183678-183689.
- Ioulianou, P., Vasilakis, V., Moscholios, I., Logothetis, M., A signature-based intrusion detection system for the Internet of Things. Information and Communication Technology Form, 2018.
- Raza, S., Wallgren, L., Voigt, T., SVELTE: Real-time intrusion detection in the Internet of Things. Ad hoc networks, 2013, 11(8), 2661-2674.
- Shreenivas, D., Raza, S., Voigt, T., Intrusion detection in the RPL-connected 6LoWPAN networks. In Proceedings of the 3rd ACM international workshop on IoT privacy, trust, and security, 2017, 31-38.
- Napiah, M. N., Idris, M. Y. I. B., Ramli, R., Ahmedy, I., Compression header analyzer intrusion detection system (CHA-IDS) for 6LoWPAN communication protocol. IEEE Access, 2018, 6, 16623-16638.
- Yavuz, F. Y., Devrim, Ü. N. A. L., Ensar, G. Ü. L., Deep learning for detection of routing attacks in the Internet of things. International Journal of Computational Intelligence Systems, 2018, 12(1), 39-58.
- Jan, S. U., Ahmed, S., Shakhov, V., & Koo, I., Toward a lightweight intrusion detection system for the Internet of things. IEEE Access, 2019, 7, 42450-42471.
Makine Öğrenmesi Algoritmasını Kullanarak IoT'de Hello Flood Saldırısının Önlenmesine Yönelik Yeni Bir Yaklaşım
Yıl 2022,
Cilt: 9 Sayı: 4, 1529 - 1541, 31.12.2022
Serkan Gönen
,
Mehmet Ali Barışkan
,
Gökçe Karacayılmaz
,
Birkan Alhan
,
Ercan Nurcan Yılmaz
,
Harun Artuner
,
Erhan Sindiren
Öz
Bilgi teknolojilerindeki gelişmelerle birlikte alışverişten eğitime, sağlıktan eğlenceye hayatımızın her alanı dijital çevre olarak tanımlanan siber ortama geçiş yapmıştır. Özellikle internetin yaygınlaşmasıyla ve her cihazın IP tabanlı olarak kontrol edilmesi ve yönetilmesiyle Nesnelerin İnterneti (IoT) kavramı ortaya çıkmıştır. Günümüzde IoT, küçük ev aletleri, akıllı araçlar, akıllı evler ve hatta akıllı şehirler gibi birçok uygulama alanında kullanılmaktadır. Bu sayede hız, verimlilik, uzaktan algılama ve kontrol ve etkinlik gibi insan yaşamına birçok önemli katkı sağlamaktadır. Ancak sunduğu bu avantajlar ile her kullanıcı alanına göre farklı güvenlik gereksinimlerine ihtiyaç duyar. IoT cihazlarının sınırlı kaynaklarla birbirine bağlı olması, kullanıcıların güvenliklerini tehdit eden iç ve dış saldırılara karşı savunmasız kalmasına neden olur. Bu çalışmada, IoT ağlarına karşı önemli bir saldırı türü olan Flood saldırısı ele alınmıştır. Çalışmanın analizi kapsamında öncelikle flood saldırısının sistem üzerindeki etkisi incelenmiştir. Ardından, bir makine öğrenmesi algoritması olan K-means algoritması aracılığıyla saldırıyı tespit etmeye odaklanılmıştır. Analiz sonuçları, flood saldırısının gerçekleştirildiği saldırı noktalarının başarıyla tespit edildiğini göstermiştir. Bu sayede benzer flood saldırıları en kısa sürede tespit edilecek ve sistem, saldırıdan en az hasarla kurtulacak ve en kısa sürede devreye girecektir. Çalışmanın IoT güvenliği ile ilgili çalışmalara önemli katkılar sağlayacağı düşünülmektedir.
Kaynakça
- Lin, H., Bergmann, N. W., IoT privacy and security challenges for smart home environments. Information, 2016, 7(3), 44.
- Nawaratne, R., Alahakoon, D., De Silva, D., Chhetri, P., Chilamkurti, N., Self-evolving intelligent algorithms for facilitating data interoperability in IoT environments. Future Generation Computer Systems, 2018, 86, 421-432.
- Chouhan, P. K., McClean, S., Shackleton, M., Situation assessment to secure IoT applications. In 2018 Fifth International Conference on Internet of Things: Systems, Management and Security, 2018, pp. 70-77, IEEE.
- Ravi, N., Shalinie, S. M., Learning-driven detection and mitigation of DDoS attack in IoT via SDN-cloud architecture. IEEE Internet of Things Journal, 2020, 7(4), 3559-3570.
- Firouzi, F., Farahani, B., Weinberger, M., DePace, G., & Aliee, F. S., IoT fundamentals: definitions, architectures, challenges, and promises. In Intelligent internet of things 2020, pp. 3-50, Springer, Cham.
- Niraja, K. S., & Rao, S. S., A hybrid algorithm design for near real time detection cyber attacks from compromised devices to enhance IoT security. Materials Today: Proceedings, 2021
- Syed, N. F., Baig, Z., Ibrahim, A., & Valli, C., Denial of service attack detection through machine learning for the IoT. Journal of Information and Telecommunication, 2020, 4(4), 482-503.
- Ahmad, R., & Alsmadi, I., Machine learning approaches to IoT security: A systematic literature review. Internet of Things, 2021, 14.
- Lin, T., Deep Learning for IoT. In 2020 IEEE 39th International Performance Computing and Communications Conference (IPCCC), 2020, pp. 1-4, IEEE.
- Tyagi, H., Kumar, R., Attack and Anomaly Detection in IoT Networks Using Supervised Machine Learning Approaches. Rev. d'Intelligence Artif., 2021, 35(1), 11-21.
- Xiao, L., Wan, X., Lu, X., Zhang, Y., Wu, D., IoT security techniques based on machine learning: how do IoT devices use AI to enhance security? IEEE Signal Process, 2018, Mag. 35 (5), 41–49
- Stellios, I., Kotzanikolaou, P., Grigoriadis, C., Assessing IoT enabled cyber-physical attack paths against critical systems. Computers & Security, 2021,107, 102316.
- Yazdinejadna, A., Parizi, R. M., Dehghantanha, A., Karimipour, H., Federated learning for drone authentication. Ad Hoc Networks, 2021, 102574.
- Mandal, K., Rajkumar, M., Ezhumalai, P., Jayakumar, D., Yuvarani, R., Improved security using machine learning for IoT intrusion detection system. Materials Today: Proceedings, 2020.
- Singh, R., Singh, J., Singh, R., Fuzzy based advanced hybrid intrusion detection system to detect malicious nodes in wireless sensor networks. Wireless Communications and Mobile Computing, 2017.
- Cakir, S., Toklu, S., Yalcin, N., RPL Attack Detection and Prevention in the Internet of Things Networks Using a GRU Based Deep Learning. IEEE Access, 2020, 8, 183678-183689.
- Ioulianou, P., Vasilakis, V., Moscholios, I., Logothetis, M., A signature-based intrusion detection system for the Internet of Things. Information and Communication Technology Form, 2018.
- Raza, S., Wallgren, L., Voigt, T., SVELTE: Real-time intrusion detection in the Internet of Things. Ad hoc networks, 2013, 11(8), 2661-2674.
- Shreenivas, D., Raza, S., Voigt, T., Intrusion detection in the RPL-connected 6LoWPAN networks. In Proceedings of the 3rd ACM international workshop on IoT privacy, trust, and security, 2017, 31-38.
- Napiah, M. N., Idris, M. Y. I. B., Ramli, R., Ahmedy, I., Compression header analyzer intrusion detection system (CHA-IDS) for 6LoWPAN communication protocol. IEEE Access, 2018, 6, 16623-16638.
- Yavuz, F. Y., Devrim, Ü. N. A. L., Ensar, G. Ü. L., Deep learning for detection of routing attacks in the Internet of things. International Journal of Computational Intelligence Systems, 2018, 12(1), 39-58.
- Jan, S. U., Ahmed, S., Shakhov, V., & Koo, I., Toward a lightweight intrusion detection system for the Internet of things. IEEE Access, 2019, 7, 42450-42471.