Araştırma Makalesi
BibTex RIS Kaynak Göster

Gradient Descent Metodu ile Ultrasonik Kaynak Sisteminin Frekans Optimizasyonu

Yıl 2023, Cilt: 10 Sayı: 1, 46 - 56, 31.01.2023
https://doi.org/10.31202/ecjse.1132660

Öz

Ultrasonik kaynak, sürtünme kaynak grubuna girmesiyle, günümüz endüstrisinde birleştirme metodu olarak birçok sektörde tercih edilmektedir. Bu yolla, kaynak yapılacak materyallere dolgu malzemesine gerek kalmadan birleştirme işlemi yapılmaktadır. Kaynak esnasında dolgu malzemesi olmadığından zehirli gaz ve atıklar çıkmamakta, bu yüzden de diğer kaynaklara göre daha çevreci bir yapıya sahip olmaktadır. Rezonans çalışma frekansında maksimum güç üretmesinin yanında rahatsız edici gürültü de ortaya çıkmaktadır. Rezonans çalışma anında optimum kaynak şeklini oluşturmaktadır. Bu nedenle kaynak yapılan materyallerin boyut ve mekaniksel özelliklerine göre frekans kayması oluşmaktadır. Bu kaymanın engellenmesi için, kaynak esnasında rezonans frekansının yakalanması gerekmektedir. Gerçekleştirilen bu çalışmada, sistemin verimliliğini arttırmak amacıyla, ultrasonik kaynak makinelerinin rezonans frekansının belirlenmesi için yeni bir metodoloji gerçekleştirilmiştir. Yük değiştiğinde yeniden belirlenmesi gereken bu değişken rezonans frekans değeri, kaynak işlemi sırasında gradient descent algoritması ile online olarak belirlenmektedir. Simülasyon çalışmaları Matlab/Simulink ortamında gerçekleştirilmiştir. Maksimum rasgele değişim %5 ve %20 olan iki farklı rezonans frekansı kullanılmıştır. Sonuç olarak, Gradient Descent algoritması ile 150 mS içinde %5 değişen rezonans frekansı ve 250 mS içinde %20 değişen rezonans frekansı elde edilmiştir.

Kaynakça

  • [1]. Ganesh, M., & Praba Rajathi, R. Experimental study on ultrasonic welding of aluminum sheet to copper sheet. Int. J. Res. Eng. Technol, (2013). 2(12), 161-166.
  • [2]. Wagner, G., Balle, F., & Eifler, D. Ultrasonic welding of hybrid joints. Jom, (2012). 64(3), 401-406.
  • [3]. Bolt, S. Ultrasonic plastic welding of carbon fiber reinforced polyamide 6 to aluminium and steel (Doctoral dissertation, Delft University of Technology). (2014).
  • [4]. Gutnik, V. G., Gorbach, N. V., & Dashkov, A. V. Some characteristics of ultrasonic welding of polymers. Fibre Chemistry, (2002). 34(6), 426-432.
  • [5]. Wagner, G., Balle, F., & Eifler, D. Ultrasonic welding of aluminum alloys to fiber reinforced polymers. Advanced Engineering Materials, (2013). 15(9), 792-803.
  • [6]. Zhou, Y. N., & Breyen, M. D. (Eds.). Joining and assembly of medical materials and devices. Elsevier. (2013).
  • [7]. S. Elangovan, K. Prakasan, V. Jaiganesh. Optimization of ultrasonic welding parameters for copper to copper joints using design of experiments. The International Journal of Advanced Manufacturing Technology. 51(163–171). (2010).
  • [8]. M. P. Satpathy, B. R. Moharana, S. Dewangan, S. K. Sahoo. Modeling and optimization of ultrasonic metal welding on dissimilar sheets using fuzzy based genetic algorithm approach. Engineering Science and Technology, an International Journal. 18(634-647). (2015)
  • [9]. Elangovan, A. Kumarasamy, K. Prakasan. Parametric optimization of ultrasonic metal welding using response surface methodology and genetic algorithm. The International Journal of Advanced Manufacturing Technology(2012) 63(5-8).
  • [10]. S. Wang, S. Lin. Optimization on ultrasonic plastic welding systems based on two dimensional phononic crystal. Ultrasonics. 99. (2019).
  • [11]. A. Kumarasamy, S. Elangovan. Modelling and multi objective optimization of ultrasonic inserting parameters through fuzzy logic and genetic algorithm. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 41. (2019).
  • [12]. W.C. Chang, S.C. Su and K.H. Ma. An efficient inverter circuit design for driving the ultrasonic welding transducer. International Journal of the Physical Sciences 6(1332-1341). (2011).
  • [13]. W. Kardyś, A. Mılewskı, P. Kogut, P. Kluk, M. Kıełbasıńskı A new type of high power ultrasonic generator for welding and cutting Processes. Hydroacoustıcs. 19(209-218). (2016)
  • [14]. W. Kardy, A. Milewski, P. Kogut, P. Kluk Universal Ultrasonic Generator for Welding. Optical and Acoustical Methods in Science and Technology. 124(456-458). (2013).
  • [15]. Dong, H. J., Wu, J., Zhang, G. Y., & Wu, H. F. An improved phase-locked loop method for automatic resonance frequency tracing based on static capacitance broadband compensation for a high-power ultrasonic transducer. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, (2012) 59(2), 205-210.
  • [16]. Kuang, Y., Sadiq, M. R., Cochran, S., & Huang, Z. Ultrasonic cutting with resonance tracking and vibration stabilization. In 2012 IEEE International Ultrasonics Symposium (2012, October). (pp. 843-846). IEEE.
  • [17]. Shi, W., Zhao, H., Zhao, B., Qi, X., Chen, W., & Tan, J. Extended optimum frequency tracking scheme for ultrasonic motor. Ultrasonics, (2018). 90, 63-70.
  • [18]. Kuang, Y., Jin, Y., Cochran, S., & Huang, Z. Resonance tracking and vibration stablilization for high power ultrasonic transducers. Ultrasonics, (2014). 54(1), 187-194.
  • [19]. Li, H., & Jiang, Z. On automatic resonant frequency tracking in LLC series resonant converter based on zero-current duration time of secondary diode. IEEE Transactions on Power Electronics, (2015). 31(7), 4956-4962.
  • [20]. Feng, W., Mattavelli, P., & Lee, F. C. Pulsewidth locked loop (PWLL) for automatic resonant frequency tracking in LLC DC–DC transformer (LLC-DCX). IEEE Transactions on Power Electronics, (2012). 28(4), 1862-1869.
  • [21]. Cheng, L. C., Kang, Y. C., & Chen, C. L. A resonance-frequency-tracing method for a current-fed piezoelectric transducer. IEEE Transactions on Industrial Electronics, (2014). 61(11), 6031-6040.
  • [22]. Zhang, H., Wang, F., Zhang, D., Hou, Y., & Xi, T. A new automatic resonance frequency tracking method for piezoelectric ultrasonic transducers used in thermosonic wire bonding. Sensors and Actuators A: Physical, (2015). 235, 140-150.
  • [23]. Jiang, X., Zhang, X., Zhu, X., Sui, H., & Zhang, D. Study of phase shift control in high-speed ultrasonic vibration cutting. IEEE Transactions on Industrial Electronics, (2017). 65(3), 2467-2474.
  • [24]. Ghenna, S., Giraud, F., Giraud-Audine, C., & Amberg, M. Vector control of piezoelectric transducers and ultrasonic actuators. IEEE Transactions on Industrial Electronics, (2017). 65(6), 4880-4888.
  • [25]. Wang, J. D., Jiang, J. J., Duan, F. J., Cheng, S. Y., Peng, C. X., Liu, W., & Qu, X. H. A high-tolerance matching method against load fluctuation for ultrasonic transducers. IEEE Transactions on Power Electronics, (2019). 35(1), 1147-1155.
  • [26]. Long, Z., Pan, Z., Li, C., & Zhang, J. Constant amplitude control of high-power ultrasonic drive system. In 2014 IEEE International Conference on Information and Automation (ICIA) (2014, July). (pp. 582-586). IEEE.
  • [27]. Arnau, A., Sogorb, T., & Jimenez, Y. A new method for continuous monitoring of series resonance frequency and simple determination of motional impedance parameters for loaded quartz-crystal resonators. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, (2001). 48(2), 617-623.
  • [28]. Lin, C. H., Lu, Y., Chiu, H. J., & Ou, C. L. Eliminating the temperature effect of piezoelectric transformer in backlight electronic ballast by applying the digital phase-locked-loop technique. IEEE Transactions on Industrial Electronics, (2007). 54(2), 1024-1031.
  • [29]. Tao, Y., Hwachun, L., Dongheon, L., Sunggun, S., Dongok, K., & Sungjun, P. Design of LC resonant inverter for ultrasonic metal welding system. In 2008 International Conference on Smart Manufacturing Application. (2008, April). (pp. 543-548). IEEE.
  • [30]. S. RudeR. An overview of gradient descent optimization Algorithms. arXiv:1609.04747v2 [cs.LG] (2017)
  • [31]. İmran, O. Investigation of Surface Damages in Composite Materials Using Ultrasonic Lamb Waves. El-Cezeri, 8(2), 652-665.
  • [32]. Sivari, E., & Civelek, Z. Genel anestezide kullanılan propofolün başlangıç dozunun bulanık mantık ile tahmini. El-Cezeri, (2019). 6(3), 808-816.
  • [33]. Arıkan, Y., Tolga, Ş., & Ertuğrul, Ç. Raylı Araçlarda Enerji Verimliliği Çalışması. El-Cezeri, (2020). 7(1), 223-235.

Frequency Optimization of Ultrasonic Welding System with Gradient Descent Method

Yıl 2023, Cilt: 10 Sayı: 1, 46 - 56, 31.01.2023
https://doi.org/10.31202/ecjse.1132660

Öz

Ultrasonic welding, with its entry into the friction welding group, is preferred in many sectors as a joining method in today's industry. In this way, the materials to be welded are joined without the need for filler material. Since there is no filling material during welding, toxic gases and wastes do not come out, so it has a more environmentally friendly structure compared to other sources. In addition to producing maximum power at the resonance operating frequency, disturbing noise also occurs. Optimum welding form occurs during resonance operation. Therefore, frequency shift occurs according to the size and mechanical properties of the welded materials. To prevent this shift, the resonant frequency must be captured during welding. In this study, a new methodology has been developed to determine the resonance frequency of ultrasonic welding machines to increase the efficiency of the system. This variable resonance frequency value, which needs to be re-determined when the load changes, is determined online with the gradient descent algorithm during the welding process. Simulation studies were carried out in Matlab/Simulink environment. Two different resonance frequencies with a maximum random variation of 5% and 20% were used. As a result, 5% changing resonance frequency within 150 mS and 20% varying resonance frequency within 250 mS were obtained with the Gradient Descent algorithm.

Kaynakça

  • [1]. Ganesh, M., & Praba Rajathi, R. Experimental study on ultrasonic welding of aluminum sheet to copper sheet. Int. J. Res. Eng. Technol, (2013). 2(12), 161-166.
  • [2]. Wagner, G., Balle, F., & Eifler, D. Ultrasonic welding of hybrid joints. Jom, (2012). 64(3), 401-406.
  • [3]. Bolt, S. Ultrasonic plastic welding of carbon fiber reinforced polyamide 6 to aluminium and steel (Doctoral dissertation, Delft University of Technology). (2014).
  • [4]. Gutnik, V. G., Gorbach, N. V., & Dashkov, A. V. Some characteristics of ultrasonic welding of polymers. Fibre Chemistry, (2002). 34(6), 426-432.
  • [5]. Wagner, G., Balle, F., & Eifler, D. Ultrasonic welding of aluminum alloys to fiber reinforced polymers. Advanced Engineering Materials, (2013). 15(9), 792-803.
  • [6]. Zhou, Y. N., & Breyen, M. D. (Eds.). Joining and assembly of medical materials and devices. Elsevier. (2013).
  • [7]. S. Elangovan, K. Prakasan, V. Jaiganesh. Optimization of ultrasonic welding parameters for copper to copper joints using design of experiments. The International Journal of Advanced Manufacturing Technology. 51(163–171). (2010).
  • [8]. M. P. Satpathy, B. R. Moharana, S. Dewangan, S. K. Sahoo. Modeling and optimization of ultrasonic metal welding on dissimilar sheets using fuzzy based genetic algorithm approach. Engineering Science and Technology, an International Journal. 18(634-647). (2015)
  • [9]. Elangovan, A. Kumarasamy, K. Prakasan. Parametric optimization of ultrasonic metal welding using response surface methodology and genetic algorithm. The International Journal of Advanced Manufacturing Technology(2012) 63(5-8).
  • [10]. S. Wang, S. Lin. Optimization on ultrasonic plastic welding systems based on two dimensional phononic crystal. Ultrasonics. 99. (2019).
  • [11]. A. Kumarasamy, S. Elangovan. Modelling and multi objective optimization of ultrasonic inserting parameters through fuzzy logic and genetic algorithm. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 41. (2019).
  • [12]. W.C. Chang, S.C. Su and K.H. Ma. An efficient inverter circuit design for driving the ultrasonic welding transducer. International Journal of the Physical Sciences 6(1332-1341). (2011).
  • [13]. W. Kardyś, A. Mılewskı, P. Kogut, P. Kluk, M. Kıełbasıńskı A new type of high power ultrasonic generator for welding and cutting Processes. Hydroacoustıcs. 19(209-218). (2016)
  • [14]. W. Kardy, A. Milewski, P. Kogut, P. Kluk Universal Ultrasonic Generator for Welding. Optical and Acoustical Methods in Science and Technology. 124(456-458). (2013).
  • [15]. Dong, H. J., Wu, J., Zhang, G. Y., & Wu, H. F. An improved phase-locked loop method for automatic resonance frequency tracing based on static capacitance broadband compensation for a high-power ultrasonic transducer. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, (2012) 59(2), 205-210.
  • [16]. Kuang, Y., Sadiq, M. R., Cochran, S., & Huang, Z. Ultrasonic cutting with resonance tracking and vibration stabilization. In 2012 IEEE International Ultrasonics Symposium (2012, October). (pp. 843-846). IEEE.
  • [17]. Shi, W., Zhao, H., Zhao, B., Qi, X., Chen, W., & Tan, J. Extended optimum frequency tracking scheme for ultrasonic motor. Ultrasonics, (2018). 90, 63-70.
  • [18]. Kuang, Y., Jin, Y., Cochran, S., & Huang, Z. Resonance tracking and vibration stablilization for high power ultrasonic transducers. Ultrasonics, (2014). 54(1), 187-194.
  • [19]. Li, H., & Jiang, Z. On automatic resonant frequency tracking in LLC series resonant converter based on zero-current duration time of secondary diode. IEEE Transactions on Power Electronics, (2015). 31(7), 4956-4962.
  • [20]. Feng, W., Mattavelli, P., & Lee, F. C. Pulsewidth locked loop (PWLL) for automatic resonant frequency tracking in LLC DC–DC transformer (LLC-DCX). IEEE Transactions on Power Electronics, (2012). 28(4), 1862-1869.
  • [21]. Cheng, L. C., Kang, Y. C., & Chen, C. L. A resonance-frequency-tracing method for a current-fed piezoelectric transducer. IEEE Transactions on Industrial Electronics, (2014). 61(11), 6031-6040.
  • [22]. Zhang, H., Wang, F., Zhang, D., Hou, Y., & Xi, T. A new automatic resonance frequency tracking method for piezoelectric ultrasonic transducers used in thermosonic wire bonding. Sensors and Actuators A: Physical, (2015). 235, 140-150.
  • [23]. Jiang, X., Zhang, X., Zhu, X., Sui, H., & Zhang, D. Study of phase shift control in high-speed ultrasonic vibration cutting. IEEE Transactions on Industrial Electronics, (2017). 65(3), 2467-2474.
  • [24]. Ghenna, S., Giraud, F., Giraud-Audine, C., & Amberg, M. Vector control of piezoelectric transducers and ultrasonic actuators. IEEE Transactions on Industrial Electronics, (2017). 65(6), 4880-4888.
  • [25]. Wang, J. D., Jiang, J. J., Duan, F. J., Cheng, S. Y., Peng, C. X., Liu, W., & Qu, X. H. A high-tolerance matching method against load fluctuation for ultrasonic transducers. IEEE Transactions on Power Electronics, (2019). 35(1), 1147-1155.
  • [26]. Long, Z., Pan, Z., Li, C., & Zhang, J. Constant amplitude control of high-power ultrasonic drive system. In 2014 IEEE International Conference on Information and Automation (ICIA) (2014, July). (pp. 582-586). IEEE.
  • [27]. Arnau, A., Sogorb, T., & Jimenez, Y. A new method for continuous monitoring of series resonance frequency and simple determination of motional impedance parameters for loaded quartz-crystal resonators. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, (2001). 48(2), 617-623.
  • [28]. Lin, C. H., Lu, Y., Chiu, H. J., & Ou, C. L. Eliminating the temperature effect of piezoelectric transformer in backlight electronic ballast by applying the digital phase-locked-loop technique. IEEE Transactions on Industrial Electronics, (2007). 54(2), 1024-1031.
  • [29]. Tao, Y., Hwachun, L., Dongheon, L., Sunggun, S., Dongok, K., & Sungjun, P. Design of LC resonant inverter for ultrasonic metal welding system. In 2008 International Conference on Smart Manufacturing Application. (2008, April). (pp. 543-548). IEEE.
  • [30]. S. RudeR. An overview of gradient descent optimization Algorithms. arXiv:1609.04747v2 [cs.LG] (2017)
  • [31]. İmran, O. Investigation of Surface Damages in Composite Materials Using Ultrasonic Lamb Waves. El-Cezeri, 8(2), 652-665.
  • [32]. Sivari, E., & Civelek, Z. Genel anestezide kullanılan propofolün başlangıç dozunun bulanık mantık ile tahmini. El-Cezeri, (2019). 6(3), 808-816.
  • [33]. Arıkan, Y., Tolga, Ş., & Ertuğrul, Ç. Raylı Araçlarda Enerji Verimliliği Çalışması. El-Cezeri, (2020). 7(1), 223-235.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mustafa Teke 0000-0002-7262-4918

Akif Kalınbaçoğlu 0000-0001-7142-6701

Fecir Duran 0000-0001-7256-5471

Meral Özarslan Yatak 0000-0002-1091-1647

Yayımlanma Tarihi 31 Ocak 2023
Gönderilme Tarihi 18 Haziran 2022
Kabul Tarihi 26 Ocak 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 10 Sayı: 1

Kaynak Göster

IEEE M. Teke, A. Kalınbaçoğlu, F. Duran, ve M. Özarslan Yatak, “Frequency Optimization of Ultrasonic Welding System with Gradient Descent Method”, ECJSE, c. 10, sy. 1, ss. 46–56, 2023, doi: 10.31202/ecjse.1132660.