Yıl 2024,
Cilt: 11 Sayı: 2, 199 - 206, 07.07.2024
Ali Toptaş
,
Mehmet Çalışır
,
Ali Kılıç
Proje Numarası
MGA-2023-44749
Kaynakça
- [1] A. Valavanidis, K. Fiotakis, and T. Vlachogianni. Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. Journal of Environmental Science and Health, Part C, 26(4):339–362, 2008.
- [2] M. He, T. Ichinose, M. Kobayashi, K. Arashidani, S. Yoshida, M. Nishikawa, H. Takano, G. Sun, and T. Shibamoto. Differences in allergic inflammatory responses between urban pm2.5 and fine particle derived from desert-dust in murine lungs. Toxicology and Applied Pharmacology, 297:41–55, 2016.
- [3] R. Zhang, C. Liu, P. Hsu, C. Zhang, N. Liu, J. Zhang, H. R. Lee, Y. Lu, Y. Qiu, S. Chu, and Y. Cui. Nanofiber air filters with high-temperature stability for efficient pm2.5 removal from the pollution sources. Nano Letters, 16(6):3642–3649, 2016.
- [4] J. Liu, D. Y. H. Pui, and J. Wang. Removal of airborne nanoparticles by membrane coated filters. Science of The Total Environment, 409(22):4868–4874, 2011.
- [5] Z. Li, W. Kang, H. Zhao, M. Hu, J. Ju, N. Deng, and B. Cheng. Fabrication of polyvinylidene fluoride tree-like nanofiber web for ultra high performance air filtration. Material Design, 92:95–101, 2016.
- [6] J. L. Davis, H. J. Walls, L. Han, T. A. Walker, J. A. Tufts, A. Andrady, and D. Ensor. Use of nanofibers in high-efficiency solid-state lighting. In Seventh International Conference on Solid State Lighting, pages 248–256. SPIE, 2007.
- [7] A. Kilic, S. Selcuk, A. Toptas, and A. Seyhan. Nonelectro nanofiber spinning techniques, chapter 10, pages 267–293. Elsevier, 2023.
- [8] M. Aliabadi. Effect of electrospinning parameters on the air filtration performance using electrospun polyamide-6 nanofibers. Chemical Industry and Chemical Engineering Quarterly, 23(4):441–446, 2017.
- [9] P.-Y. Chen and S.-H. Tung. One-step electrospinning to produce nonsolvent-induced macroporous fibers with ultrahigh oil adsorption capability. Macromolecules, 50(6):2528–2534, 2017.
- [10] X. Ding, Y. Li, Y. Si, X. Yin, J. Yu, and B. Ding. Electrospun polyvinylidene fluoride/sio2 nanofibrous membranes with enhanced electret property for efficient air filtration. Composites Communications, 13:57–62, 2019.
- [11] T. Tanski, P. Jarka, andW. Matysiak. Electrospinning Method Used to Create Functional Nanocomposites Films. InTech, 2018. . URL http://dx.doi.org/10.5772/intechopen.70984.
- [12] M. Ekrem. Mechanical properties of mwcnt reinforced polyvinyl alcohol nanofiber mats by electrospinnig method. El- Cezeri, 4(2), 2017.
- [13] M. Xia, Q. Liu, Z. Zhou, Y. Tao, M. F. Li, K. Liu, Z. Wu, and D. Wang. A novel hierarchically structured and highly hydrophilic poly(vinyl alcohol-co-ethylene)/poly(ethylene terephthalate) nanoporous membrane for lithium-ion battery separator. Journal of Power Sources, 266:29–35, 2014.
- [14] Y. Polat, E. S. Pampal, E. Stojanovska, R. Simsek, A. Hassanin, A. Kilic, A. Demir, and S. Yilmaz. Solution blowing of thermoplastic polyurethane nanofibers: A facile method to produce flexible porous materials. Journal of Applied Polymer
Science, 133(9), 2016.
- [15] H. Lou, W. Han, and X. Wang. Numerical study on the solution blowing annular jet and its correlation with fiber morphology. Industrial & Engineering Chemistry Research, 53(7):2830–2838, 2014.
- [16] M. Gungor, S. Selcuk, A. Toptas, and A. Kilic. Aerosol filtration performance of solution blown pa6 webs with bimodal fiber distribution. ACS Omega, 7(50):46602–46612, 2022.
- [17] M. Gungor, M. D. Calişir, and A. Kilic. Solution-blown pa6- and pvdf-based nanofibrous composite mats for aerosol filtration. Fibers and Polymers, 24(5):1603–1612, 2023.
- [18] L. Shi, X. Zhuang, X. Tao, B. Cheng, andW. Kang. Solution blowing nylon 6 nanofiber mats for air filtration. Fibers and Polymers, 14(9):1485–1490, 2013.
- [19] A. Al Rai, E. Stojanovska, G. Fidan, E. Yetgin, Y. Polat, A. Kilic, A. Demir, and S. Yilmaz. Structure and performance of electroblown pvdf-based nanofibrous electret filters. Polymer Engineering and Science, 60(6):1186–1193, 2020.
- [20] A. Eticha, A. Toptaş, Y. Akgül, and A. Kilic. Electrically assisted solution blow spinning of pvdf/tpu nanofibrous mats for air filtration applications. Turkish Journal of Chemistry, 47(1):47–53, 2023.
- [21] M. Gungor, A. Toptas, M. D. Calisir, and A. Kilic. Aerosol filtration performance of nanofibrous mats produced via electrically assisted industrial-scale solution blowing. Polymer Engineering and Science, 61(10):2557–2566, 2021.
- [22] L. Cao, Q. Liu, J. Ren,W. Chen, Y. Pei, D. L. Kaplan, and S. Ling. Electro-blown spun silk/graphene nanoionotronic skin for multifunctional fire protection and alarm. Advanced Materials, 33(38):2102500, 2021.
- [23] Y. Liu, C. Jia, H. Zhang, H. Wang, P. Li, L. Jia, F. Wang, P. Zhu, H. Wang, L. Yu, F. Wang, L. Wang, X. Zhang, Y. Sun, and B. Li. Free-standing ultrafine nanofiber papers with high pm0.3 mechanical filtration efficiency by scalable blow and electro-blow spinning. ACS Applied Materials and Interfaces, 13(29):34773–34781, 2021.
- [24] A. Kilic, S. Russell, E. Shim, and B. Pourdeyhimi. The charging and stability of electret filters, chapter 4, pages 95–121. Woodhead Publishing Series in Textiles. Woodhead Publishing, 2017.
- [25] D. Lolla, M. Lolla, A. Abutaleb, H. U. Shin, D. H. Reneker, and G. G. Chase. Fabrication, polarization of electrospun polyvinylidene fluoride electret fibers and effect on capturing nanoscale solid aerosols. Materials, 9(8), 2016.
- [26] A. J. Lovinger. Ferroelectric polymers. Science, 220(4602):1115–1121, 1983.
- [27] T. T. Bui, M. K. Shin, S. Y. Jee, D. X. Long, J. Hong, and M. G. Kim. Ferroelectric pvdf nanofiber membrane for highefficiency pm0.3 air filtration with low air flow resistance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 640:128418, 2022.
- [28] W. W. F. Leung and Q. Sun. Electrostatic charged nanofiber filter for filtering airborne novel coronavirus (covid-19) and nano-aerosols. Separation and Purification Technology, 250:116886, 2020.
- [29] H. M. Khanlou, B. C. Ang, S. Talebian, A. M. Afifi, and A. Andriyana. Electrospinning of polymethyl methacrylate nanofibers: optimization of processing parameters using the taguchi design of experiments. Textile Research Journal, 85(4):356–368, 2015.
- [30] J. Stufken and G. S. Peace. Taguchi methods: A hands-on approach. Technometrics, 36(1):121, 1994.
- [31] T. S. Sorkhabi, M. F. Samberan, K. A. Ostrowski, P. Zajdel, A. Stempkowska, and T. Gawenda. Electrospinning of poly (acrylamide), poly (acrylic acid) and poly (vinyl alcohol) nanofibers: Characterization and optimization study on the effect of different parameters on mean diameter using taguchi design of experiment method. Materials, 15(17), 2022.
- [32] A. Pinarbasi and F. C. Callioglu. Electrospinning of pvp nanofibers and optimization with taguchi experimental design. Süleyman Demirel University Faculty of Arts and Science Journal of Science, 17(2), 2022.
- [33] A. Tariq, A. H. Behravesh, Utkarsh, and G. Rizvi. Statistical modeling and optimization of electrospinning for improved morphology and enhanced β-phase in polyvinylidene fluoride nanofibers. Polymers, 15(22), 2023.
- [34] S. Gee, B. Johnson, and A. L. Smith. Optimizing electrospinning parameters for piezoelectric pvdf nanofiber membranes. Journal of Membrane Science, 563:804–812, 2018.
- [35] N. A. S. Gundogdu, Y. Akgul, and A. Kilic. Optimization of centrifugally spun thermoplastic polyurethane nanofibers for air filtration applications. Aerosol Science and Technology, 52(5):515–523, 2018.
- [36] Z. Sarac, A. Kilic, and C. Tasdelen-Yucedag. Optimization of electro-blown polysulfone nanofiber mats for air filtration applications. Polymer Engineering and Science, 63(3):723–737, 2023.
- [37] H. Oktem, T. Erzurumlu, and I. Uzman. Application of taguchi optimization technique in determining plastic injection molding process parameters for a thin-shell part. Materials and Design, 28(4):1271–1278, 2007.
- [38] H.-L. Lin and C.-P. Chou. Optimization of the gta welding process using combination of the taguchi method and a neuralgenetic approach. Materials and Manufacturing Processes, 25(7):631–636, 2010.
- [39] Y. Polat, M. Yangaz, M. D. Calisir, M. Z. Gül, A. Demir, B. Ekici, and A. Kilic. Çözeltiden üfleme ile nanolif üretim yönteminde hava basıncının nanolif üretimine etkisi. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(4), 2020.
- [40] A. Toptaş, M. D. Çalışır, and A. Kılıç. Production of ultrafine pvdf nanofiber-/nanonet-based air filters via the electroblowing technique by employing peg as a pore-forming agent. ACS Omega, 2023.
Optimization of Electro-Blown PVDF Nanofibrous Mats for Air Filter Applications
Yıl 2024,
Cilt: 11 Sayı: 2, 199 - 206, 07.07.2024
Ali Toptaş
,
Mehmet Çalışır
,
Ali Kılıç
Öz
Particles with diameters smaller than 2.5 µm (PM2.5) have the capability to penetrate respiratory system, thereby exerting adverse effects on human health. High-efficiency nanofiber mats present a viable and efficient solution for the purification of ambient air contaminated with such particulate matter. In this study, PVDF based electret nanofiber mats were optimized via electro-blowing technique. The experimental parameters were systematically devised utilizing a Taguchi three-level L9 orthogonal design, and the results were subsequently analyzed using ANOVA. In this context, among the examined parameters (concentration, air pressure, and electrical field), the most significant factors influencing fiber diameters were identified as concentration and electric field strength. While an increase in air pressure exhibited a negligible influence on fiber diameters, it was observed to mitigate undesired droplet density. The optimal parameters yielding the thinnest fiber (124 ± 71 nm) were determined as 9 wt.% concentration, 2 bar air pressure, and 30 kV electrical voltage. Furthermore, the application of corona discharge treatment to the specimens resulted in a remarkable enhancement of quality factors by over 70%.
Etik Beyan
I declare that our study is an original work; that I have adhered to scientific ethical principles and rules at all stages of the study, including preparation, data collection, analysis, and presentation of information; that I have referenced all data and information not obtained within the scope of this study, and included these references in the bibliography; that I have not made any changes to the data used; and that I accept and comply with all the terms and conditions of the Committee on Publication Ethics (COPE) by stating my ethical duties and responsibilities. I declare that, at any time, if a situation contrary to this statement regarding the study is identified, I consent to all moral and legal consequences that may arise.
Destekleyen Kurum
Istanbul Technical University, Scientific Research Projects Coordination Unit
Proje Numarası
MGA-2023-44749
Teşekkür
The authors gratefully acknowledge AREKA Advanced Technology Ltd. Comp., (www.arekananofiber.com) for the electro-blowing system.
Kaynakça
- [1] A. Valavanidis, K. Fiotakis, and T. Vlachogianni. Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. Journal of Environmental Science and Health, Part C, 26(4):339–362, 2008.
- [2] M. He, T. Ichinose, M. Kobayashi, K. Arashidani, S. Yoshida, M. Nishikawa, H. Takano, G. Sun, and T. Shibamoto. Differences in allergic inflammatory responses between urban pm2.5 and fine particle derived from desert-dust in murine lungs. Toxicology and Applied Pharmacology, 297:41–55, 2016.
- [3] R. Zhang, C. Liu, P. Hsu, C. Zhang, N. Liu, J. Zhang, H. R. Lee, Y. Lu, Y. Qiu, S. Chu, and Y. Cui. Nanofiber air filters with high-temperature stability for efficient pm2.5 removal from the pollution sources. Nano Letters, 16(6):3642–3649, 2016.
- [4] J. Liu, D. Y. H. Pui, and J. Wang. Removal of airborne nanoparticles by membrane coated filters. Science of The Total Environment, 409(22):4868–4874, 2011.
- [5] Z. Li, W. Kang, H. Zhao, M. Hu, J. Ju, N. Deng, and B. Cheng. Fabrication of polyvinylidene fluoride tree-like nanofiber web for ultra high performance air filtration. Material Design, 92:95–101, 2016.
- [6] J. L. Davis, H. J. Walls, L. Han, T. A. Walker, J. A. Tufts, A. Andrady, and D. Ensor. Use of nanofibers in high-efficiency solid-state lighting. In Seventh International Conference on Solid State Lighting, pages 248–256. SPIE, 2007.
- [7] A. Kilic, S. Selcuk, A. Toptas, and A. Seyhan. Nonelectro nanofiber spinning techniques, chapter 10, pages 267–293. Elsevier, 2023.
- [8] M. Aliabadi. Effect of electrospinning parameters on the air filtration performance using electrospun polyamide-6 nanofibers. Chemical Industry and Chemical Engineering Quarterly, 23(4):441–446, 2017.
- [9] P.-Y. Chen and S.-H. Tung. One-step electrospinning to produce nonsolvent-induced macroporous fibers with ultrahigh oil adsorption capability. Macromolecules, 50(6):2528–2534, 2017.
- [10] X. Ding, Y. Li, Y. Si, X. Yin, J. Yu, and B. Ding. Electrospun polyvinylidene fluoride/sio2 nanofibrous membranes with enhanced electret property for efficient air filtration. Composites Communications, 13:57–62, 2019.
- [11] T. Tanski, P. Jarka, andW. Matysiak. Electrospinning Method Used to Create Functional Nanocomposites Films. InTech, 2018. . URL http://dx.doi.org/10.5772/intechopen.70984.
- [12] M. Ekrem. Mechanical properties of mwcnt reinforced polyvinyl alcohol nanofiber mats by electrospinnig method. El- Cezeri, 4(2), 2017.
- [13] M. Xia, Q. Liu, Z. Zhou, Y. Tao, M. F. Li, K. Liu, Z. Wu, and D. Wang. A novel hierarchically structured and highly hydrophilic poly(vinyl alcohol-co-ethylene)/poly(ethylene terephthalate) nanoporous membrane for lithium-ion battery separator. Journal of Power Sources, 266:29–35, 2014.
- [14] Y. Polat, E. S. Pampal, E. Stojanovska, R. Simsek, A. Hassanin, A. Kilic, A. Demir, and S. Yilmaz. Solution blowing of thermoplastic polyurethane nanofibers: A facile method to produce flexible porous materials. Journal of Applied Polymer
Science, 133(9), 2016.
- [15] H. Lou, W. Han, and X. Wang. Numerical study on the solution blowing annular jet and its correlation with fiber morphology. Industrial & Engineering Chemistry Research, 53(7):2830–2838, 2014.
- [16] M. Gungor, S. Selcuk, A. Toptas, and A. Kilic. Aerosol filtration performance of solution blown pa6 webs with bimodal fiber distribution. ACS Omega, 7(50):46602–46612, 2022.
- [17] M. Gungor, M. D. Calişir, and A. Kilic. Solution-blown pa6- and pvdf-based nanofibrous composite mats for aerosol filtration. Fibers and Polymers, 24(5):1603–1612, 2023.
- [18] L. Shi, X. Zhuang, X. Tao, B. Cheng, andW. Kang. Solution blowing nylon 6 nanofiber mats for air filtration. Fibers and Polymers, 14(9):1485–1490, 2013.
- [19] A. Al Rai, E. Stojanovska, G. Fidan, E. Yetgin, Y. Polat, A. Kilic, A. Demir, and S. Yilmaz. Structure and performance of electroblown pvdf-based nanofibrous electret filters. Polymer Engineering and Science, 60(6):1186–1193, 2020.
- [20] A. Eticha, A. Toptaş, Y. Akgül, and A. Kilic. Electrically assisted solution blow spinning of pvdf/tpu nanofibrous mats for air filtration applications. Turkish Journal of Chemistry, 47(1):47–53, 2023.
- [21] M. Gungor, A. Toptas, M. D. Calisir, and A. Kilic. Aerosol filtration performance of nanofibrous mats produced via electrically assisted industrial-scale solution blowing. Polymer Engineering and Science, 61(10):2557–2566, 2021.
- [22] L. Cao, Q. Liu, J. Ren,W. Chen, Y. Pei, D. L. Kaplan, and S. Ling. Electro-blown spun silk/graphene nanoionotronic skin for multifunctional fire protection and alarm. Advanced Materials, 33(38):2102500, 2021.
- [23] Y. Liu, C. Jia, H. Zhang, H. Wang, P. Li, L. Jia, F. Wang, P. Zhu, H. Wang, L. Yu, F. Wang, L. Wang, X. Zhang, Y. Sun, and B. Li. Free-standing ultrafine nanofiber papers with high pm0.3 mechanical filtration efficiency by scalable blow and electro-blow spinning. ACS Applied Materials and Interfaces, 13(29):34773–34781, 2021.
- [24] A. Kilic, S. Russell, E. Shim, and B. Pourdeyhimi. The charging and stability of electret filters, chapter 4, pages 95–121. Woodhead Publishing Series in Textiles. Woodhead Publishing, 2017.
- [25] D. Lolla, M. Lolla, A. Abutaleb, H. U. Shin, D. H. Reneker, and G. G. Chase. Fabrication, polarization of electrospun polyvinylidene fluoride electret fibers and effect on capturing nanoscale solid aerosols. Materials, 9(8), 2016.
- [26] A. J. Lovinger. Ferroelectric polymers. Science, 220(4602):1115–1121, 1983.
- [27] T. T. Bui, M. K. Shin, S. Y. Jee, D. X. Long, J. Hong, and M. G. Kim. Ferroelectric pvdf nanofiber membrane for highefficiency pm0.3 air filtration with low air flow resistance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 640:128418, 2022.
- [28] W. W. F. Leung and Q. Sun. Electrostatic charged nanofiber filter for filtering airborne novel coronavirus (covid-19) and nano-aerosols. Separation and Purification Technology, 250:116886, 2020.
- [29] H. M. Khanlou, B. C. Ang, S. Talebian, A. M. Afifi, and A. Andriyana. Electrospinning of polymethyl methacrylate nanofibers: optimization of processing parameters using the taguchi design of experiments. Textile Research Journal, 85(4):356–368, 2015.
- [30] J. Stufken and G. S. Peace. Taguchi methods: A hands-on approach. Technometrics, 36(1):121, 1994.
- [31] T. S. Sorkhabi, M. F. Samberan, K. A. Ostrowski, P. Zajdel, A. Stempkowska, and T. Gawenda. Electrospinning of poly (acrylamide), poly (acrylic acid) and poly (vinyl alcohol) nanofibers: Characterization and optimization study on the effect of different parameters on mean diameter using taguchi design of experiment method. Materials, 15(17), 2022.
- [32] A. Pinarbasi and F. C. Callioglu. Electrospinning of pvp nanofibers and optimization with taguchi experimental design. Süleyman Demirel University Faculty of Arts and Science Journal of Science, 17(2), 2022.
- [33] A. Tariq, A. H. Behravesh, Utkarsh, and G. Rizvi. Statistical modeling and optimization of electrospinning for improved morphology and enhanced β-phase in polyvinylidene fluoride nanofibers. Polymers, 15(22), 2023.
- [34] S. Gee, B. Johnson, and A. L. Smith. Optimizing electrospinning parameters for piezoelectric pvdf nanofiber membranes. Journal of Membrane Science, 563:804–812, 2018.
- [35] N. A. S. Gundogdu, Y. Akgul, and A. Kilic. Optimization of centrifugally spun thermoplastic polyurethane nanofibers for air filtration applications. Aerosol Science and Technology, 52(5):515–523, 2018.
- [36] Z. Sarac, A. Kilic, and C. Tasdelen-Yucedag. Optimization of electro-blown polysulfone nanofiber mats for air filtration applications. Polymer Engineering and Science, 63(3):723–737, 2023.
- [37] H. Oktem, T. Erzurumlu, and I. Uzman. Application of taguchi optimization technique in determining plastic injection molding process parameters for a thin-shell part. Materials and Design, 28(4):1271–1278, 2007.
- [38] H.-L. Lin and C.-P. Chou. Optimization of the gta welding process using combination of the taguchi method and a neuralgenetic approach. Materials and Manufacturing Processes, 25(7):631–636, 2010.
- [39] Y. Polat, M. Yangaz, M. D. Calisir, M. Z. Gül, A. Demir, B. Ekici, and A. Kilic. Çözeltiden üfleme ile nanolif üretim yönteminde hava basıncının nanolif üretimine etkisi. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(4), 2020.
- [40] A. Toptaş, M. D. Çalışır, and A. Kılıç. Production of ultrafine pvdf nanofiber-/nanonet-based air filters via the electroblowing technique by employing peg as a pore-forming agent. ACS Omega, 2023.