Araştırma Makalesi
BibTex RIS Kaynak Göster

Production of biological hydrogen and bacterial carotenoids with Rhodobacter sphaeroides O.U.001 in a biorefinery concept

Yıl 2022, Cilt: 5 Sayı: 2, 56 - 61, 28.12.2022
https://doi.org/10.46239/ejbcs.1051757

Öz

In this study, the goal was to produce biohydrogen and bacterial carotenoids with Rhodobacter sphaeroides O.U.001, a purple non-sulfur photosynthetic bacterium, utilizing sugar beet molasses in the context of biorefinery. First, media with different sugar concentrations (10 g/L, 20 g/L, 30 g/L, 40 g/L, 50 g/L) were prepared for bacterial growth. Then, hydrogen production was carried out using these media in anaerobic conditions in 100 ml bioreactors. After hydrogen gas was collected from the bioreactors, carotenoid extraction was performed from the remaining bacteria. As a result of the analyzes, it was found that the amount of biohydrogen and the amount of bacterial carotenoids obtained were inversely proportional to the increased sugar concentrations. The maximum hydrogen formation was detected in the medium containing 10 g/L of sugar (19.18 mL). According to the results of gas chromatography analysis, the quantity of hydrogen in the total gas was found to be around 23.6%. The highest yield of carotenoids was again obtained from bacteria reproduced in a medium containing 10 g/L of sugar (3.12 mg/g, carotenoid/dry biomass). As a conclusion, this study provides an example for the successful realization of two high value-added products within a biorefinery approach by using molasses obtained at an affordable cost.

Destekleyen Kurum

Necmettin Erbakan University

Proje Numarası

1917MER03004

Teşekkür

This study was supported by Research Fund of the Necmettin Erbakan University (Project no: 1917MER03004).

Kaynakça

  • Chang S, Li J, Liu F. 2011. Continuous biohydrogen production from diluted molasses in an anaerobic contact reactor. Frontiers of Environmental Science and Engineering in China. 5(1):140-148. doi:org/10.1007/S11783-010-0258-2
  • Cherubini F, Jungmeier G. 2010. LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass. The International Journal of Life Cycle Assessment. 15(1):53-66. doi:org/10.1007/S11367-009-0124-2
  • Dursun N, Gülşen H. 2019. Biyohidrojen Üretim Yöntemleri ve Biyohidrojen Üretiminde Biyoreaktörlerin Kullanımı. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(1):66-75. doi:org/10.21597/JIST.418445
  • Gu Z, Deming C, Yongbin H, Zhigang C, Feirong G. 2008. Optimization of carotenoids extraction from Rhodobacter sphaeroides. LWT - Food Science and Technology. 41(6): 1082-1088. doi:org/10.1016/J.LWT.2007.07.005
  • Kars G, Alparslan Ü. 2013. Valorization of sugar beet molasses for the production of biohydrogen and 5-aminolevulinic acid by Rhodobacter sphaeroides O.U.001 in a biorefinery concept. International Journal of Hydrogen Energy. 38(34):14488-14494. doi:org/10.1016/J.IJHYDENE.2013.09.050
  • Kars G, Ceylan A. 2019. Hydrogen generation by Rhodobacter sphaeroides O.U.001 using pretreated waste barley. Cumhuriyet Science Journal. 40(2):414-423. doi:org/10.17776/CSJ.524612
  • Kars G, Alparslan Ü. 2020. Unraveling optimum culture composition for hydrogen and 5-aminolevulinic acid production by Rhodobacter sphaeroides O.U.001. International Journal of Energy Applications and Technologies. 7(3):61-68. doi:org/10.31593/ijeat.738318
  • Kars G, Demirel Kars M, Obalı İ, Emsen A, Gündüz U. 2020. Investigation of Antioxidant and Cytotoxic Effects of Biotechnologically Produced Carotenoids from Rhodobacter sphaeroides O.U. 001. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 10(3):559-568. doi:org/10.17714/GUMUSFENBIL.597048
  • Kars G, Gündüz U. 2010. Towards a super H2 producer: Improvements in photofermentative biohydrogen production by genetic manipulations. International Journal of Hydrogen Energy. 35(13):6646-6656. doi:org/10.1016/J.IJHYDENE.2010.04.037
  • Keskin T, Hallenbeck PC. 2012. Hydrogen production from sugar industry wastes using single-stage photofermentation. Bioresource Technology. 112:131-136. doi:org/10.1016/J.BIORTECH.2012.02.077
  • Kiokias S, Oreopoulou V. 2006. Antioxidant properties of natural carotenoid extracts against the AAPH-initiated oxidation of food emulsions. Innovative Food Science & Emerging Technologies. 7:132-139. doi:org/10.1016/J.IFSET.2005.12.004
  • Liu S, Zhang G, Li X, Wu P, Zhang J. 2015. Enhancement of Rhodobacter sphaeroides growth and carotenoid production through biostimulation. Journal of Environmental Sciences. 33:21-28. doi:org/10.1016/J.JES.2015.01.005
  • Motohashi N, Wakabayashi H, Kurihara T, Takada Y, Maruyama S, Sakagami H, Nakashima H, Tani S, Shirataki Y, Kawase M, Wolfard K, Molnár J. 2003. Cytotoxic and multidrug resistance reversal activity of a vegetable, ‘Anastasia Red’, a variety of sweet pepper. Phytotherapy Research. 17(4):348-352. doi:org/10.1002/PTR.1144
  • Özgür E, Mars AE, Peksel B, Louwerse A, Yücel M, Gündüz U, Claassen PAM, Eroǧlu I. 2010. Biohydrogen production from beet molasses by sequential dark and photofermentation. International Journal of Hydrogen Energy. 35(2):511-517. doi:org/10.1016/J.IJHYDENE.2009.10.094
  • Özsoy Demiriz B, Kars G, Yücel M, Eroğlu İ, Gündüz U. 2019. Hydrogen and poly-β-hydroxybutyric acid production at various acetate concentrations using Rhodobacter capsulatus DSM 1710. International Journal of Hydrogen Energy. 44(32):17269-17277. doi:org/10.1016/J.IJHYDENE.2019.02.036
  • Sagir E, Alipour S, Elkahlout K, Koku H, Gunduz U, Eroglu I, Yücel M. 2018. Biological hydrogen production from sugar beet molasses by agar immobilized R. capsulatus in a panel photobioreactor. International Journal of Hydrogen Energy. 43(32):14987-14995. doi:org/10.1016/J.IJHYDENE.2018.06.052
  • Uyar, B, Eroğlu İ, Yücel M, Gündüz U, Türker L. 2007. Effect of light intensity,wavelength and illumination protocol on hydrogen production in photobioreactors. International Journal of Hydrogen Energy. 32(18):4670-4677.
  • Young A, Lowe G. 2001. Antioxidant and prooxidant properties of carotenoids. Archives of Biochemistry and Biophysics. 385(1):20-27. doi:org/10.1006/ABBI.2000.2149

Biyorafineri konseptiyle Rhodobacter sphaeroides O.U.001 ile biyolojik hidrojen ve bakteriyel karotenoid üretimi

Yıl 2022, Cilt: 5 Sayı: 2, 56 - 61, 28.12.2022
https://doi.org/10.46239/ejbcs.1051757

Öz

Bu çalışmada biyorafineri konsepti ile şeker pancarı melasından mor kükürtsüz fotosentetik bir bakteri olan Rhodobacter sphaeroides O.U.001 ile biyohidrojen ve bakteriyel karotenoidin üretilmesi amaçlanmıştır. İlk önce, bakteri büyütmek için farklı şeker konsantrasyonlarında (10 g/L, 20 g/L, 30 g/L, 40 g/L, 50 g/L) besiyerleri hazırlandı. Daha sonra, hidrojen üretimi bu besiyerlerini kullanarak 100 mL’lik biyoreaktörlerde anaerobik koşullarda gerçekleştirildi. Biyoreaktörden hidrojen gazı toplandıktan sonra kalan bakterilerden karotenoid ekstraksiyonu gerçekleştirildi. Analizler sonucunda, artan şeker konsantrasyonu ile elde edilen biyohidrojen miktarı ve bakteriyel karotenoid miktarının ters orantılı olduğu bulundu. En yüksek hidrojen üretimine 10 g/L şeker içeren besiyerinde görüldü (19,18 mL). Gaz kromatografisi analiz sonuçlarına göre toplam gaz içerisinde hidrojen miktarı %23,6 civarında tespit edilmiştir. En yüksek karotenoid verimi yine 10 g/L şeker içeren besiyerinde çoğaltılan bakterilerden elde edilmiştir (3,12 mg/g, karotenoid/kuru biyokütle). Sonuç olarak, bu çalışma uygun maliyetle elde edilen melasın kullanılmasıyla yüksek katma değerli iki ürünün biyorafineri yaklaşımı ile başarıyla gerçekleştirilmesi adına bir örnek sunmaktadır.

Proje Numarası

1917MER03004

Kaynakça

  • Chang S, Li J, Liu F. 2011. Continuous biohydrogen production from diluted molasses in an anaerobic contact reactor. Frontiers of Environmental Science and Engineering in China. 5(1):140-148. doi:org/10.1007/S11783-010-0258-2
  • Cherubini F, Jungmeier G. 2010. LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass. The International Journal of Life Cycle Assessment. 15(1):53-66. doi:org/10.1007/S11367-009-0124-2
  • Dursun N, Gülşen H. 2019. Biyohidrojen Üretim Yöntemleri ve Biyohidrojen Üretiminde Biyoreaktörlerin Kullanımı. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(1):66-75. doi:org/10.21597/JIST.418445
  • Gu Z, Deming C, Yongbin H, Zhigang C, Feirong G. 2008. Optimization of carotenoids extraction from Rhodobacter sphaeroides. LWT - Food Science and Technology. 41(6): 1082-1088. doi:org/10.1016/J.LWT.2007.07.005
  • Kars G, Alparslan Ü. 2013. Valorization of sugar beet molasses for the production of biohydrogen and 5-aminolevulinic acid by Rhodobacter sphaeroides O.U.001 in a biorefinery concept. International Journal of Hydrogen Energy. 38(34):14488-14494. doi:org/10.1016/J.IJHYDENE.2013.09.050
  • Kars G, Ceylan A. 2019. Hydrogen generation by Rhodobacter sphaeroides O.U.001 using pretreated waste barley. Cumhuriyet Science Journal. 40(2):414-423. doi:org/10.17776/CSJ.524612
  • Kars G, Alparslan Ü. 2020. Unraveling optimum culture composition for hydrogen and 5-aminolevulinic acid production by Rhodobacter sphaeroides O.U.001. International Journal of Energy Applications and Technologies. 7(3):61-68. doi:org/10.31593/ijeat.738318
  • Kars G, Demirel Kars M, Obalı İ, Emsen A, Gündüz U. 2020. Investigation of Antioxidant and Cytotoxic Effects of Biotechnologically Produced Carotenoids from Rhodobacter sphaeroides O.U. 001. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 10(3):559-568. doi:org/10.17714/GUMUSFENBIL.597048
  • Kars G, Gündüz U. 2010. Towards a super H2 producer: Improvements in photofermentative biohydrogen production by genetic manipulations. International Journal of Hydrogen Energy. 35(13):6646-6656. doi:org/10.1016/J.IJHYDENE.2010.04.037
  • Keskin T, Hallenbeck PC. 2012. Hydrogen production from sugar industry wastes using single-stage photofermentation. Bioresource Technology. 112:131-136. doi:org/10.1016/J.BIORTECH.2012.02.077
  • Kiokias S, Oreopoulou V. 2006. Antioxidant properties of natural carotenoid extracts against the AAPH-initiated oxidation of food emulsions. Innovative Food Science & Emerging Technologies. 7:132-139. doi:org/10.1016/J.IFSET.2005.12.004
  • Liu S, Zhang G, Li X, Wu P, Zhang J. 2015. Enhancement of Rhodobacter sphaeroides growth and carotenoid production through biostimulation. Journal of Environmental Sciences. 33:21-28. doi:org/10.1016/J.JES.2015.01.005
  • Motohashi N, Wakabayashi H, Kurihara T, Takada Y, Maruyama S, Sakagami H, Nakashima H, Tani S, Shirataki Y, Kawase M, Wolfard K, Molnár J. 2003. Cytotoxic and multidrug resistance reversal activity of a vegetable, ‘Anastasia Red’, a variety of sweet pepper. Phytotherapy Research. 17(4):348-352. doi:org/10.1002/PTR.1144
  • Özgür E, Mars AE, Peksel B, Louwerse A, Yücel M, Gündüz U, Claassen PAM, Eroǧlu I. 2010. Biohydrogen production from beet molasses by sequential dark and photofermentation. International Journal of Hydrogen Energy. 35(2):511-517. doi:org/10.1016/J.IJHYDENE.2009.10.094
  • Özsoy Demiriz B, Kars G, Yücel M, Eroğlu İ, Gündüz U. 2019. Hydrogen and poly-β-hydroxybutyric acid production at various acetate concentrations using Rhodobacter capsulatus DSM 1710. International Journal of Hydrogen Energy. 44(32):17269-17277. doi:org/10.1016/J.IJHYDENE.2019.02.036
  • Sagir E, Alipour S, Elkahlout K, Koku H, Gunduz U, Eroglu I, Yücel M. 2018. Biological hydrogen production from sugar beet molasses by agar immobilized R. capsulatus in a panel photobioreactor. International Journal of Hydrogen Energy. 43(32):14987-14995. doi:org/10.1016/J.IJHYDENE.2018.06.052
  • Uyar, B, Eroğlu İ, Yücel M, Gündüz U, Türker L. 2007. Effect of light intensity,wavelength and illumination protocol on hydrogen production in photobioreactors. International Journal of Hydrogen Energy. 32(18):4670-4677.
  • Young A, Lowe G. 2001. Antioxidant and prooxidant properties of carotenoids. Archives of Biochemistry and Biophysics. 385(1):20-27. doi:org/10.1006/ABBI.2000.2149
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Kübra Danış 0000-0003-0565-2297

Buse Nur Bingöl 0000-0003-1528-4854

Gökhan Kars 0000-0002-2507-2305

Proje Numarası 1917MER03004
Yayımlanma Tarihi 28 Aralık 2022
Kabul Tarihi 15 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 5 Sayı: 2

Kaynak Göster

APA Danış, K., Bingöl, B. N., & Kars, G. (2022). Production of biological hydrogen and bacterial carotenoids with Rhodobacter sphaeroides O.U.001 in a biorefinery concept. Eurasian Journal of Biological and Chemical Sciences, 5(2), 56-61. https://doi.org/10.46239/ejbcs.1051757
AMA Danış K, Bingöl BN, Kars G. Production of biological hydrogen and bacterial carotenoids with Rhodobacter sphaeroides O.U.001 in a biorefinery concept. Eurasian J. Bio. Chem. Sci. Aralık 2022;5(2):56-61. doi:10.46239/ejbcs.1051757
Chicago Danış, Kübra, Buse Nur Bingöl, ve Gökhan Kars. “Production of Biological Hydrogen and Bacterial Carotenoids With Rhodobacter Sphaeroides O.U.001 in a Biorefinery Concept”. Eurasian Journal of Biological and Chemical Sciences 5, sy. 2 (Aralık 2022): 56-61. https://doi.org/10.46239/ejbcs.1051757.
EndNote Danış K, Bingöl BN, Kars G (01 Aralık 2022) Production of biological hydrogen and bacterial carotenoids with Rhodobacter sphaeroides O.U.001 in a biorefinery concept. Eurasian Journal of Biological and Chemical Sciences 5 2 56–61.
IEEE K. Danış, B. N. Bingöl, ve G. Kars, “Production of biological hydrogen and bacterial carotenoids with Rhodobacter sphaeroides O.U.001 in a biorefinery concept”, Eurasian J. Bio. Chem. Sci., c. 5, sy. 2, ss. 56–61, 2022, doi: 10.46239/ejbcs.1051757.
ISNAD Danış, Kübra vd. “Production of Biological Hydrogen and Bacterial Carotenoids With Rhodobacter Sphaeroides O.U.001 in a Biorefinery Concept”. Eurasian Journal of Biological and Chemical Sciences 5/2 (Aralık 2022), 56-61. https://doi.org/10.46239/ejbcs.1051757.
JAMA Danış K, Bingöl BN, Kars G. Production of biological hydrogen and bacterial carotenoids with Rhodobacter sphaeroides O.U.001 in a biorefinery concept. Eurasian J. Bio. Chem. Sci. 2022;5:56–61.
MLA Danış, Kübra vd. “Production of Biological Hydrogen and Bacterial Carotenoids With Rhodobacter Sphaeroides O.U.001 in a Biorefinery Concept”. Eurasian Journal of Biological and Chemical Sciences, c. 5, sy. 2, 2022, ss. 56-61, doi:10.46239/ejbcs.1051757.
Vancouver Danış K, Bingöl BN, Kars G. Production of biological hydrogen and bacterial carotenoids with Rhodobacter sphaeroides O.U.001 in a biorefinery concept. Eurasian J. Bio. Chem. Sci. 2022;5(2):56-61.