Araştırma Makalesi
BibTex RIS Kaynak Göster

İnsansız Hava Araçları İçin İç Mekan Seyrüsefer Sisteminin Sistem Mühendisliği Tabanlı Konsept Tasarımı

Yıl 2022, Cilt: 5 Sayı: 2, 86 - 93, 31.12.2022
https://doi.org/10.55581/ejeas.1211750

Öz

İnsansız hava araçları (İHA'lar) hayatımızdaki kullanım durumlarında sağladığı avantajlar nedeniyle gün geçtikçe önem kazanır hale gelmiştir; özellikle üretim tesislerindeki otomasyon gibi endüstri 4.0 konseptinde önemli rol oynayabilirler. Sistem mühendisliği yaklaşımı, tasarım ve üretim aşamalarının planlanmasıdır. Sistemlerin her sistemi, alt sistemi, bileşeni veya görevi proje başlamadan önce incelenir ve her gereksinim belirlenir. Sistemler ve ürünler arasındaki uyumluluğun araştırılması, üretim aşamalarındaki riskleri en aza indirir. Bu makale, kapalı ortamlarda kullanılması amaçlanan bir İHA navigasyon sisteminin kavramsal tasarımında sistem mühendisliği yaklaşımının kullanılmasını önermektedir. Otonom iç mekan uçuşunu sağlamak için sistem mühendisliği yaklaşımı kullanılarak sistem gereksinimleri belirlenir. Daha sonra adım adım İHA'nın operasyonunu tamamlaması için ihtiyaç duyduğu temel fonksiyonlar belirlenir. İhtiyaç duyulan ürünler bir ağaç halinde listelenir ve ürünler ile fonksiyonlar arasındaki ilişki araştırılır. Böylece fonksiyonel ağaç, fonksiyonlar ve ürün ilişki matrisi, ürün ağacı ve kullanım durumları kullanılarak İHA iç mekan navigasyon sisteminin kavramsal tasarımı gösterilmiştir. Ayrıca, sistem işletim gereksinimleri araştırılır ve gereksinim işletim aşamaları, modları ve kullanım durumları da belirlenir. Sistem mühendisliği sayesinde tüm bu karmaşık sistemler sistematik bir şekilde bir araya getirilerek kavramsal tasarıma ulaşılır.

Kaynakça

  • [1] Amidi, O., Mesaki, Y., & Kanade, T. (1994, March). Research on an autonomous vision-guided helicopter. In NASA. Johnson Space Center, Conference on Intelligent Robotics in Field, Factory, Service and Space (CIRFFSS 1994), Volume 2 (No. AIAA PAPER 94-1240-CP).
  • [2] Ready, B. B. and Taylor, C. N. (2007). "Improving Accuracy of MAV Pose Estimation using Visual Odometry," American Control Conference, 2007, pp. 3721-3726, doi: 10.1109/ACC.2007.4283137.
  • [3] D. Scaramuzza and F. Fraundorfer, "Visual Odometry [Tutorial]," in IEEE Robotics & Automation Magazine, vol. 18, no. 4, pp. 80-92, Dec. 2011, doi: 10.1109/MRA.2011.943233.
  • [4] Durrant-Whyte H., Rye D., NebotE. (1996). Localization of Autonomous Guided Vehicles. In: Giralt G., Hirzinger G. (eds) Robotics Research. Springer, London. doi: 10.1007/978-1-4471-1021-7_69
  • [5] H. Durrant-Whyte and T. Bailey, "Simultaneous localization and mapping: part I," in IEEE Robotics & Automation Magazine, vol. 13, no. 2, pp. 99-110, June 2006, doi: 10.1109/MRA.2006.1638022.
  • [6] T. Bailey and H. Durrant-Whyte, "Simultaneous localization and mapping (SLAM): part II," in IEEE Robotics & Automation Magazine, vol. 13, no. 3, pp. 108-117, Sept. 2006, doi: 10.1109/MRA.2006.1678144.
  • [7] Kim, Y., & Bang, H. (2018). Introduction to Kalman Filter and Its Applications. In (Ed.), Introduction and Implementations of the Kalman Filter. IntechOpen. doi: 10.5772/intechopen.80600
  • [8] Wang, C., Wang, T., Liang, J., Chen, Y., and Wu, Y., (2012). "Monocular vision and IMU based navigation for a small, unmanned helicopter," 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1694-1699, doi: 10.1109/ICIEA.2012.6360998.
  • [9] Andersen, E. D., and Taylor, C. N., (2007). "Improving MAV pose estimation using visual information," IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, pp. 3745-3750, doi: 10.1109/IROS.2007.4399563.
  • [10] Mebarki, R, Cacace, J., and Lippiello, V., (2013). "Velocity estimation of an UAV using visual and IMU data in a GPS-denied environment" IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 1-6, doi: 10.1109/SSRR.2013.6719334.
  • [11] Rady, S., Kandil A.A., and Badreddin, E., (2011). "A hybrid localization approach for UAV in GPS denied areas," IEEE/SICE International Symposium on System Integration (SII), 211, pp. 1269-1274, doi: 10.1109/SII.2011.6147631.
  • [12] Magree, D., and Johnson, E. N. , (2014). "Combined laser and vision-aided inertial navigation for an indoor unmanned aerial vehicle," 2014 American Control Conference, pp. 1900-1905, doi: 10.1109/ACC.2014.6858995.
  • [13] Achtelik et al., (2012). "SFly: Swarm of micro flying robots," IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 2649-2650, doi: 10.1109/IROS.2012.6386281.
  • [14] Conte, Gianpaolo and Patrick Doherty. “An Integrated UAV Navigation System Based on Aerial Image Matching.” 2008 IEEE Aerospace Conference (2008): 1 - 10. doi: 10.1109/AERO.2008. 4526556.
  • [15] Power W., Pavlovski M., Saranovic D., Stojkovic I., Obradovic Z. (2020). Autonomous Navigation for Drone Swarms in GPS-Denied Environments Using Structured Learning. In: Maglogiannis I., Iliadis L., Pimenidis E. (eds) Artificial Intelligence Applications and Innovations. AIAI 2020. IFIP Advances in Information and Communication Technology, vol 584. Springer, Cham. doi: 10.1007/978-3-030-49186-4_19
  • [16] Viola, N., Corpino, S., Fioriti, M. and Stesina, F., (2012). "Functional Analysis in Systems Engineering: Methodology and Applications", in Systems Engineering - Practice and Theory. London, United Kingdom: IntechOpen, [Online]. Available: https://www.intechopen.com/chapters/32617 doi: 10.5772/34556
  • [17] PLANTUML, (2022). https://plantuml.com/, Acces Date: 23 Oct. 2022.
  • [18] Paşaoğlu, M., Canseven, M.F., Işık, H.B., Demir, D.G., Sakarya, U., (2022). “System Engineering Approach to an Indoor Navigation System of Unmanned Aerial Vehicles”, ICASEM 4th International Congress of Applied Sciences, Engineering and Mathematics, Tekirdağ , Türkiye, October 20-23.
  • [19] Sanal, A., & Öztürkoğlu, Y. (2018). “Evaluation of usage and application areas of QR codes in service industry”, Business &Amp; Management Studies: An International Journal, 5(4), 172–189. doi: 10.15295/bmij.v5i4.180.

System Engineering-Based Conceptual Design of Indoor Navigation System of Unmanned Aerial Vehicles

Yıl 2022, Cilt: 5 Sayı: 2, 86 - 93, 31.12.2022
https://doi.org/10.55581/ejeas.1211750

Öz

Unmanned aerial vehicles (UAVs) have been become important day by day because of advantages in our life use cases; specially, they can play important role in the industry 4.0 concept such as automation in production plants. System engineering approach is planning the design and production phases. Every system, subsystem, component, or mission of the systems are investigated before project starts and each requirement is set. The investigation of compatibility between systems and products minimizes the risks during the production phases. This paper proposes the usage of system engineering approach to the conceptual design of an UAV navigation system which aims to be used in indoor environments. In order to provide autonomous indoor flight, system requirements are set by using system engineering approach. Then step by step, the basic functions that UAV needs to complete operation are specified. The required products are listed as a tree and the relation between products and functions are investigated. Thus, the conceptual design of the UAV indoor navigation system is demonstrated by using of the functional tree, the functions and product relation matrix, the product tree, and the use cases. Moreover, the system operational requirements are investigated, and the requirement operation phases, modes and use cases are also determined. Thanks to system engineering, all these complex systems are put together systematically, and the conceptual design is achieved.

Kaynakça

  • [1] Amidi, O., Mesaki, Y., & Kanade, T. (1994, March). Research on an autonomous vision-guided helicopter. In NASA. Johnson Space Center, Conference on Intelligent Robotics in Field, Factory, Service and Space (CIRFFSS 1994), Volume 2 (No. AIAA PAPER 94-1240-CP).
  • [2] Ready, B. B. and Taylor, C. N. (2007). "Improving Accuracy of MAV Pose Estimation using Visual Odometry," American Control Conference, 2007, pp. 3721-3726, doi: 10.1109/ACC.2007.4283137.
  • [3] D. Scaramuzza and F. Fraundorfer, "Visual Odometry [Tutorial]," in IEEE Robotics & Automation Magazine, vol. 18, no. 4, pp. 80-92, Dec. 2011, doi: 10.1109/MRA.2011.943233.
  • [4] Durrant-Whyte H., Rye D., NebotE. (1996). Localization of Autonomous Guided Vehicles. In: Giralt G., Hirzinger G. (eds) Robotics Research. Springer, London. doi: 10.1007/978-1-4471-1021-7_69
  • [5] H. Durrant-Whyte and T. Bailey, "Simultaneous localization and mapping: part I," in IEEE Robotics & Automation Magazine, vol. 13, no. 2, pp. 99-110, June 2006, doi: 10.1109/MRA.2006.1638022.
  • [6] T. Bailey and H. Durrant-Whyte, "Simultaneous localization and mapping (SLAM): part II," in IEEE Robotics & Automation Magazine, vol. 13, no. 3, pp. 108-117, Sept. 2006, doi: 10.1109/MRA.2006.1678144.
  • [7] Kim, Y., & Bang, H. (2018). Introduction to Kalman Filter and Its Applications. In (Ed.), Introduction and Implementations of the Kalman Filter. IntechOpen. doi: 10.5772/intechopen.80600
  • [8] Wang, C., Wang, T., Liang, J., Chen, Y., and Wu, Y., (2012). "Monocular vision and IMU based navigation for a small, unmanned helicopter," 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1694-1699, doi: 10.1109/ICIEA.2012.6360998.
  • [9] Andersen, E. D., and Taylor, C. N., (2007). "Improving MAV pose estimation using visual information," IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, pp. 3745-3750, doi: 10.1109/IROS.2007.4399563.
  • [10] Mebarki, R, Cacace, J., and Lippiello, V., (2013). "Velocity estimation of an UAV using visual and IMU data in a GPS-denied environment" IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 1-6, doi: 10.1109/SSRR.2013.6719334.
  • [11] Rady, S., Kandil A.A., and Badreddin, E., (2011). "A hybrid localization approach for UAV in GPS denied areas," IEEE/SICE International Symposium on System Integration (SII), 211, pp. 1269-1274, doi: 10.1109/SII.2011.6147631.
  • [12] Magree, D., and Johnson, E. N. , (2014). "Combined laser and vision-aided inertial navigation for an indoor unmanned aerial vehicle," 2014 American Control Conference, pp. 1900-1905, doi: 10.1109/ACC.2014.6858995.
  • [13] Achtelik et al., (2012). "SFly: Swarm of micro flying robots," IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 2649-2650, doi: 10.1109/IROS.2012.6386281.
  • [14] Conte, Gianpaolo and Patrick Doherty. “An Integrated UAV Navigation System Based on Aerial Image Matching.” 2008 IEEE Aerospace Conference (2008): 1 - 10. doi: 10.1109/AERO.2008. 4526556.
  • [15] Power W., Pavlovski M., Saranovic D., Stojkovic I., Obradovic Z. (2020). Autonomous Navigation for Drone Swarms in GPS-Denied Environments Using Structured Learning. In: Maglogiannis I., Iliadis L., Pimenidis E. (eds) Artificial Intelligence Applications and Innovations. AIAI 2020. IFIP Advances in Information and Communication Technology, vol 584. Springer, Cham. doi: 10.1007/978-3-030-49186-4_19
  • [16] Viola, N., Corpino, S., Fioriti, M. and Stesina, F., (2012). "Functional Analysis in Systems Engineering: Methodology and Applications", in Systems Engineering - Practice and Theory. London, United Kingdom: IntechOpen, [Online]. Available: https://www.intechopen.com/chapters/32617 doi: 10.5772/34556
  • [17] PLANTUML, (2022). https://plantuml.com/, Acces Date: 23 Oct. 2022.
  • [18] Paşaoğlu, M., Canseven, M.F., Işık, H.B., Demir, D.G., Sakarya, U., (2022). “System Engineering Approach to an Indoor Navigation System of Unmanned Aerial Vehicles”, ICASEM 4th International Congress of Applied Sciences, Engineering and Mathematics, Tekirdağ , Türkiye, October 20-23.
  • [19] Sanal, A., & Öztürkoğlu, Y. (2018). “Evaluation of usage and application areas of QR codes in service industry”, Business &Amp; Management Studies: An International Journal, 5(4), 172–189. doi: 10.15295/bmij.v5i4.180.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Mert Paşaoğlu 0000-0002-5841-6127

Muhammet Fatih Canseven 0000-0003-0093-3452

Harun Berk Işık 0000-0002-4875-1394

Deniz Gül Demir 0000-0002-2225-279X

Ufuk Sakarya 0000-0002-8365-3415

Erken Görünüm Tarihi 31 Aralık 2022
Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 29 Kasım 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 5 Sayı: 2