Araştırma Makalesi
BibTex RIS Kaynak Göster

Volcanic Rock Reinforced Epoxy Composites for Gamma Ray Shielding

Yıl 2019, Sayı: 15, 552 - 560, 31.03.2019
https://doi.org/10.31590/ejosat.521516

Öz

In the present study, gamma ray shielding capability of
epoxy resin polymer matrix was tried to enhance with three volcanic rock
powders collected from different regions of Van, Turkey. The chemical contents
of the volcanic rocks were determined by X-ray Fluorescence spectroscopy.  The novel epoxy/volcanic rock composites were
prepared with different volcanic rock contents varying from 0 % wt. to 40% wt. The
gamma ray shielding performances of the
samples were measured experimentally by
NaI(Tl) detector for the photons with of 81 keV and
356 keV energies emitted from Ba-133 point radioactive source. The
abilities of the samples
to shield gamma radiation were evaluated in terms their mass attenuation
coefficient, half layer value thickness and mean free path distance. It was
determined that the low cost epoxy/volcanic rock  composites have a promising potential to be
utilized as a radiation shielding medium for the gamma rays.  In particular, among all volcanic rock
additives the volcanic rock additive having the highest hematite content gained
the best gamma ray shielding ability to pure epoxy for both photon energies.

Kaynakça

  • Abdel-Aziz, M., Gwaily, S., Makarious, A., & Abdo, A. E.-S. (1995). Ethylene-propylene diene rubber/low density polyethylene/boron carbide composites as neutron shields. Polymer degradation and stability, 50(2), 235-240.
  • Azman, N. N., Siddiqui, S., Hart, R., & Low, I.-M. (2013). Effect of particle size, filler loadings and x-ray tube voltage on the transmitted x-ray transmission in tungsten oxide—epoxy composites. Applied Radiation and Isotopes, 71(1), 62-67. Azman, N. Z. N., Siddiqui, S. A., & Low, I. M. (2013). Synthesis and characterization of epoxy composites filled with Pb, Bi or W compound for shielding of diagnostic x-rays. Applied Physics A, 110(1), 137-144.
  • Chen, P., & Wang, D. (2011). Epoxy resin and its application. Chemical Industry Press, Beijing, 78. Chen, S., Bourham, M., & Rabiei, A. (2015). Attenuation efficiency of X-ray and comparison to gamma ray and neutrons in composite metal foams. Radiation Physics and Chemistry, 117, 12-22. Le Bas, M., Le Maitre, R., & Woolley, A. (1992). The construction of the total alkali-silica chemical classification of volcanic rocks. Mineralogy and Petrology, 46(1), 1-22.
  • Li, R., Gu, Y., Wang, Y., Yang, Z., Li, M., & Zhang, Z. (2017). Effect of particle size on gamma radiation shielding property of gadolinium oxide dispersed epoxy resin matrix composite. Materials Research Express, 4(3), 035035. Li, R., Gu, Y., Zhang, G., Yang, Z., Li, M., & Zhang, Z. (2017). Radiation shielding property of structural polymer composite: continuous basalt fiber reinforced epoxy matrix composite containing erbium oxide. Composites Science and Technology, 143, 67-74.
  • Limkitjaroenporn, P., Chewpraditkul, W., Kaewkhao, J., & Tuscharoen, S. (2011). Effective atomic number of lead sodium borate glass systems at 662 keV. Energy Res. J, 2(1), 29-33.
  • Nambiar, S., & Yeow, J. T. (2012). Polymer-composite materials for radiation protection. ACS applied materials & interfaces, 4(11), 5717-5726.
  • Oto, B., Yıldız, N., Akdemir, F., & Kavaz, E. (2015). Investigation of gamma radiation shielding properties of various ores. Progress in Nuclear Energy, 85, 391-403.
  • Sayyed, M. (2016a). Bismuth modified shielding properties of zinc boro-tellurite glasses. Journal of Alloys and Compounds, 688, 111-117.
  • Sayyed, M. (2016b). Investigation of shielding parameters for smart polymers. Chinese journal of physics, 54(3), 408-415.
  • Singh, K., Singh, H., Sharma, V., Nathuram, R., Khanna, A., Kumar, R., . . . Sahota, H. S. (2002). Gamma-ray attenuation coefficients in bismuth borate glasses. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 194(1), 1-6.
  • Singh, N., Singh, K. J., Singh, K., & Singh, H. (2006). Gamma-ray attenuation studies of PbO–BaO–B2O3 glass system. Radiation Measurements, 41(1), 84-88.
  • Singh, S., Kumar, A., Singh, D., Thind, K. S., & Mudahar, G. S. (2008). Barium–borate–flyash glasses: as radiation shielding materials. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(1), 140-146.
  • Thibeault, S. A., Kang, J. H., Sauti, G., Park, C., Fay, C. C., & King, G. C. (2015). Nanomaterials for radiation shielding. MRS Bulletin, 40(10), 836-841.

Gama Işını Koruması için Volkanik Kaya İle Güçlendirilmiş Epoksi Kompozitler

Yıl 2019, Sayı: 15, 552 - 560, 31.03.2019
https://doi.org/10.31590/ejosat.521516

Öz

Bu çalışmada, epoksi reçine polimer matrisinin gama ışını
koruma kabiliyeti Van'ın farklı bölgelerinden toplanan üç volkanik kaya tozu
ile arttırılmaya çalışılmıştır. Volkanik kayaçların kimyasal içerikleri X-ışını
Floresans spektroskopisi ile belirlenmiştir. Ağırlıkça % 0’dan 40'a kadar
değişen oranlarda volkanik kaya içeren yeni epoksi / volkanik kaya kompozitler
hazırlanmıştır. Numunelerin gama ışını koruma performansları, Ba-133 nokta
radyoaktif kaynaktan yayılan 81 keV ve 356 keV enerjili fotonlar için deneysel
olarak NaI (Tl) detektörü ile ölçülmüştür. Numunelerin gama radyasyonunu koruma
yetenekleri kütle zayıflama katsayısı, yarı tabaka değeri kalınlığı ve ortalama
serbest yol mesafesi açısından değerlendirilmiştir. Düşük maliyetli epoksi / volkanik
kaya kompozitlerinin, gama ışınları için radyasyon koruyucu bir ortam olarak
kullanılacak umut verici bir potansiyele sahip olduğu tespit edilmiştir.
Özellikle, tüm volkanik kaya katkı maddeleri arasında, en yüksek hematit
içeriğine sahip olan volkanik kaya katkı maddesi, her iki foton enerjisinde saf
epoksiye  en iyi gama ışını koruma
kabiliyetini kazanmıştır.

Kaynakça

  • Abdel-Aziz, M., Gwaily, S., Makarious, A., & Abdo, A. E.-S. (1995). Ethylene-propylene diene rubber/low density polyethylene/boron carbide composites as neutron shields. Polymer degradation and stability, 50(2), 235-240.
  • Azman, N. N., Siddiqui, S., Hart, R., & Low, I.-M. (2013). Effect of particle size, filler loadings and x-ray tube voltage on the transmitted x-ray transmission in tungsten oxide—epoxy composites. Applied Radiation and Isotopes, 71(1), 62-67. Azman, N. Z. N., Siddiqui, S. A., & Low, I. M. (2013). Synthesis and characterization of epoxy composites filled with Pb, Bi or W compound for shielding of diagnostic x-rays. Applied Physics A, 110(1), 137-144.
  • Chen, P., & Wang, D. (2011). Epoxy resin and its application. Chemical Industry Press, Beijing, 78. Chen, S., Bourham, M., & Rabiei, A. (2015). Attenuation efficiency of X-ray and comparison to gamma ray and neutrons in composite metal foams. Radiation Physics and Chemistry, 117, 12-22. Le Bas, M., Le Maitre, R., & Woolley, A. (1992). The construction of the total alkali-silica chemical classification of volcanic rocks. Mineralogy and Petrology, 46(1), 1-22.
  • Li, R., Gu, Y., Wang, Y., Yang, Z., Li, M., & Zhang, Z. (2017). Effect of particle size on gamma radiation shielding property of gadolinium oxide dispersed epoxy resin matrix composite. Materials Research Express, 4(3), 035035. Li, R., Gu, Y., Zhang, G., Yang, Z., Li, M., & Zhang, Z. (2017). Radiation shielding property of structural polymer composite: continuous basalt fiber reinforced epoxy matrix composite containing erbium oxide. Composites Science and Technology, 143, 67-74.
  • Limkitjaroenporn, P., Chewpraditkul, W., Kaewkhao, J., & Tuscharoen, S. (2011). Effective atomic number of lead sodium borate glass systems at 662 keV. Energy Res. J, 2(1), 29-33.
  • Nambiar, S., & Yeow, J. T. (2012). Polymer-composite materials for radiation protection. ACS applied materials & interfaces, 4(11), 5717-5726.
  • Oto, B., Yıldız, N., Akdemir, F., & Kavaz, E. (2015). Investigation of gamma radiation shielding properties of various ores. Progress in Nuclear Energy, 85, 391-403.
  • Sayyed, M. (2016a). Bismuth modified shielding properties of zinc boro-tellurite glasses. Journal of Alloys and Compounds, 688, 111-117.
  • Sayyed, M. (2016b). Investigation of shielding parameters for smart polymers. Chinese journal of physics, 54(3), 408-415.
  • Singh, K., Singh, H., Sharma, V., Nathuram, R., Khanna, A., Kumar, R., . . . Sahota, H. S. (2002). Gamma-ray attenuation coefficients in bismuth borate glasses. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 194(1), 1-6.
  • Singh, N., Singh, K. J., Singh, K., & Singh, H. (2006). Gamma-ray attenuation studies of PbO–BaO–B2O3 glass system. Radiation Measurements, 41(1), 84-88.
  • Singh, S., Kumar, A., Singh, D., Thind, K. S., & Mudahar, G. S. (2008). Barium–borate–flyash glasses: as radiation shielding materials. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(1), 140-146.
  • Thibeault, S. A., Kang, J. H., Sauti, G., Park, C., Fay, C. C., & King, G. C. (2015). Nanomaterials for radiation shielding. MRS Bulletin, 40(10), 836-841.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hasret Kara Bu kişi benim 0000-0001-5436-9020

Yaşar Karabul Bu kişi benim 0000-0002-0789-556X

Mehmet Kılıç Bu kişi benim 0000-0003-1882-0405

Orhan İçelli 0000-0002-3823-0675

Zeynep Güven Özdemir 0000-0001-5085-5814

Yayımlanma Tarihi 31 Mart 2019
Yayımlandığı Sayı Yıl 2019 Sayı: 15

Kaynak Göster

APA Kara, H., Karabul, Y., Kılıç, M., İçelli, O., vd. (2019). Volcanic Rock Reinforced Epoxy Composites for Gamma Ray Shielding. Avrupa Bilim Ve Teknoloji Dergisi(15), 552-560. https://doi.org/10.31590/ejosat.521516

Cited By