Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Heavy Metal Accumulation and Biomonitoring of Lepidium draba L. Species Growing in Amasya (Turkey) Province

Yıl 2019, Sayı: 17, 491 - 499, 31.12.2019
https://doi.org/10.31590/ejosat.624424

Öz

The aim of study was to investigate the usability of the naturally growing Lepidium draba L. species in phytoremediation method. Five different samples were taken from four different localities (city centre, highway, suburban and control) in Amasya. Plant samples were collected at the end of the vegetative period of the Lepidium draba in 2015-2016. The average concentration of heavy metal accumulation in the soil was determined as Fe> Mn> Co> Ni. Accordingly, the highest heavy metal concentrations were found in the city. According to the soil enrichment factor, Fe and Mn belong to significant enrichment class. The sample areas considering geo-accumulation index are uncontaminated with Ni, Co, Mn, but roadside, suburban and control sample areas are moderately contaminated with Fe, the city sample area is contaminated with Fe as moderately and highly. The average amount of heavy metal accumulation in the plant was determined as Fe>Mn>Ni>Co. Ni concentraitons were found below the toxic limit in plant and soil, Fe concentraitons were found above the limit value in plants and soil, Co concentraitons were found above the limit value in plants and soil. While Mn concentraiton was below the limit value in soil, it was found above the toxic limit in urban, roadside and suburbs. Ni and Fe accumulaions were detected high concentrations in roots and Co and Mn accumulaions were detected high concentrations in leaves. Heavy metal accumulation was found to be higher in the city due to high traffic density. BCF values were calculated higher than one in the city center and BCF and TF values of other elements except Co were calculated above two. The most accumulated element was found as Fe in the city center and roadside. As a result, TF and BCF values and hyperacumulatory properties of L. draba were found to be high.

Kaynakça

  • Afzal, M., Ali, M. I., Munir, M. A., Ahmad, M., Mahmood, Z., Sharif, M. N., & Aslam, M. (2016). Genetic association among morphological traits of Lepidium draba. Bulletin of Biological and Allied Sciences Research, 1(1).
  • Alvarenga, P., Palma, P., Gonçalves, A. P., Fernandes, R. M., Cunha-Queda, A. C., Duarte, E., & Vallini, G. (2007). Evaluation of chemical and ecotoxicological characteristics of biodegradable organic residues for application to agricultural land. Environment International, 33(4), 505-513.
  • Asri, F. Ö., & Sönmez, S. (2006). Ağır metal toksisitesinin bitki metabolizması üzerine etkileri. Derim, 23(2), 36-45.
  • Badr, N., Fawzy, M., & Al-Qahtani, K. M. (2012). Phytoremediation: An ecological solution to heavy-metal-polluted soil and evaluation of plant removal ability. World Applied Sciences Journal, 16(9), 1292-1301.
  • Baker, A. J. M., & Brooks, R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery, 1(2), 81-126.
  • Barbieri, M. (2016). The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J Geol Geophys, 5(237), 2.
  • Blaylock, M. J., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., ... & Raskin, I. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science & Technology, 31(3), 860-865.
  • Brooks, R. R. (1972). Geobotany and biogeochemistry in mineral exploration.
  • Brooks, R. R. (1998). Plants that Hyperaccumulate Heavy Metals: Their Role in Phytoremediation, Microbiology, Archaeology. Mineral Exploration and Phytomining. Wallingford, UK: CAB International.
  • Buat-Menard, P., & Chesselet, R. (1979). Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth and Planetary Science Letters, 42(3), 399-411.
  • Carrigan, R. A., & Erwin, T. C. (1951). Cobalt Determination in Soils by Spectrographic Analysis Following Chemical Preconcentration 1. Soil Science Society of America Journal, 15(C), 145-149.
  • Cheraghi, M., Lorestani, B., & Yousefi, N. (2011). Introduction of hyperaccumulator plants with phytoremediation potential of a lead–zinc mine in Iran. World Acad Sci Eng Technol, 77, 163-8.
  • Demirayak, A., Kutbay, H. G., Sürmen, B., Kılıç, D . (2019). Arsenic accumulation in some natural and exotic tree and shrub species in Samsun Provience (Turkey). Anatolian Journal of Botany, 3(1), 13-17.
  • Doğan, M. (2019). Effect of cadmium, chromium, and lead on micropropagation and physio-biochemical parameters of Bacopa monnieri (L.) Wettst. cultured in vitro. Rendiconti Lincei. Scienze Fisiche e Naturali, 30(2), 351-366.
  • Doğan, M., Karataş, M., & Aasim, M. (2018). Kadmiyum, Krom ve Kurşunun Ceratophyllum demersum L. ve Pogostemon erectus (Dalzell) Kuntze Üzerine Fitotoksisitesinin Değerlendirilmesi. Karaelmas Science and Engineering Journal, 8(2), 543-550.
  • FAO/WHO (2003). Codex Alimentarius International Food Standards Codex Stan-179, Codex Alimentariuscommission.
  • Fergusson, J. E. (1990). Heavy elements: chemistry, environmental impact and health effects. Pergamon.
  • Galal, T. M., & Shehata, H. S. (2015). Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecological Indicators, 48, 244-251.
  • Garbisu, C., Allica, J. H., Barrutia, O., Alkorta, I., & Becerril, J. M. (2002). Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Reviews on Environmental Health, 17(3), 173-188.
  • Georgieva, S., Atanassova, J., Dinev, N. (2015). Metal hyperaccumulation in Cardaria draba (L.) Desv.(Brassicaceae) and heavy metal effects on the nematodes and a weevil associated with the plant roots in sites near a non-ferrous metal smelter in Bulgaria. Soil Sci Agroche. Ecol, 49, 55-64.
  • Ghavri, S. V., Bauddh, K., Kumar, S., & Singh, R. P. (2013). Bioaccumulation and translocation potential of Na+ and K+ in native weeds grown on industrially contaminated soil. Int J ChemTech Res, 5(4), 1869-1875.
  • Johansson, C., Norman, M., & Burman, L. (2009). Road traffic emission factors for heavy metals. Atmospheric Environment, 43(31), 4681-4688.
  • Kabata-Pendias, A., & Dudka, S. (1991). Trace metal contents ofTaraxacum officinale (dandelion) as a convenient environmental indicator. Environmental Geochemistry and Health, 13(2), 108-113.
  • Kaçar, B., & Katkat, V. (2010). Bitki Besleme (Plant Nutrition)(5. Baskı). Nobel Yayın Dağıtım.
  • Kalender, L., & Alçiçek, Ö. N. (2016). Astragalus angustifolius, Artemisia ve Juncus effusus' un Uranyum ve Toryum için Biyoakümülatör Özellikleri. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 28(2), 267-273.
  • Kılıç, D. (2019). Investigation of heavy metal accumulation and biomonitoring of Calepina irregularis species growing in Amasya (Turkey) province. Anatolian Journal of Botany, 3(2), 44-50.
  • Ladislas, S., El-Mufleh, A., Gérente, C., Chazarenc, F., Andrès, Y., & Béchet, B. (2012). Potential of aquatic macrophytes as bioindicators of heavy metal pollution in urban stormwater runoff. Water, Air, & Soil Pollution, 223(2), 877-888.
  • Luu, T. D., Truong, P., Mammucari, R., Tam, T., & Foster, N. (2009). Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. International Journal of Phytoremediation, 11(8), 664-691.
  • Macek, T., Kotrba, P., Svatos, A., Novakova, M., Demnerova, K., & Mackova, M. (2008). Novel roles for genetically modified plants in environmental protection. Trends in biotechnology, 26(3), 146-152.
  • McGrath, S. P., Zhao, F. J., & Lombi, E. (2001). Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant and Soil, 232(1-2), 207-214.
  • Mellem, J. J., Baijnath, H., & Odhav, B. (2012). Bioaccumulation of Cr, Hg, As, Pb, Cu and Ni with the ability for hyperaccumulation by Amaranthus dubius. African Journal of Agricultural Research, 7(4), 591-596.
  • Micevska, O., Hristovski, S., & Melovski, L. (2019). The impact of the ferro-nickel smelter’s fugitive dust emission on heavy metal content in soils and whitetop (Lepidium draba l.) in Kavadarcı, Republic of Macedonia. Environmental pollution, 15, 16.
  • Mingorance, M. D., Valdes, B., & Oliva, S. R. (2007). Strategies of heavy metal uptake by plants growing under industrial emissions. Environment International, 33(4), 514-520.
  • Müller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2, 108-118.
  • Nouri, J., Lorestani, B., Yousefi, N., Khorasani, N., Hasani, A. H., Seif, F., & Cheraghi, M. (2011). Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead–zinc mine (Hamedan, Iran). Environmental Earth Sciences, 62(3), 639-644.
  • Oven, M., Grill, E., Golan-Goldhirsh, A., Kutchan, T. M., & Zenk, M. H. (2002). Increase of free cysteine and citric acid in plant cells exposed to cobalt ions. Phytochemistry, 60(5), 467-474.
  • Özkul, C., Acar, R. U., Köprübaşı, N., Er, A. E., Kızılkaya, H. İ., Metin, M., & Şenel, M. N. (2018). Altıntaş (Kütahya-Türkiye) ovası tarım topraklarında ağır metal kirliliğinin araştırılması, öncel çalışma. Uygulamalı Yerbilimleri Dergisi, 17(1), 13-26.
  • Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184(1-4), 105-126.
  • Reeves, R. D., & Brooks, R. R. (1983). Hyperaccumulation of lead and zinc by two metallophytes from mining areas of Central Europe. Environmental pollution series A, Ecological and Biological, 31(4), 277-285.
  • Riahi, M. A., Nasiri, B. M., Yousefi, K., & Mohammadi, M. (2015). Investigation of the ability of Lepidium draba L. seedlings in zinc and silver ions absorption and effect of the ions on morphological and biochemical characteristics of the seedlings. Journal of Cell & Tissue, 6(1), 59-70.
  • Salt, D. E., & Rauser, W. E. (1995). MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiology, 107(4), 1293-1301.
  • Scurfield, G. (1962). Cardaria Draba (L.) Desv. Journal of Ecology, 50(2), 489-499.
  • Smical, A. I., Hotea, V., Oros, V., Juhasz, J., & Pop, E. (2008). Studies on transfer and bioaccumulation of heavy metals from soil into lettuce. Environmental Engineering and Management Journal, 7(5), 609-615.
  • Susarla, S., Medina, V. F., & McCutcheon, S. C. (2002). Phytoremediation: an ecological solution to organic chemical contamination. Ecological Engineering, 18(5), 647-658.
  • Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39(6), 611-627.
  • Van Der Ent, A., Echevarria, G., & Tibbett, M. (2016). Delimiting soil chemistry thresholds for nickel hyperaccumulator plants in Sabah (Malaysia). Chemoecology, 26(2), 67-82.
  • Vanlı, Ö. (2007). Pb, Cd, B Elementlerinin Topraklardan Şelat Destekli Fitoremediasyon Yöntemiyle Giderilmesi. (Doctoral dissertation, Fen Bilimleri Enstitüsü).
  • Vatamaniuk, O. K., Mari, S., Lu, Y. P., & Rea, P. A. (2000). Mechanism of heavy metal ion activation of phytochelatin (PC) synthase blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. Journal of Biological Chemistry, 275(40), 31451-31459.
  • Yanqun, Z., Yuan, L., Jianjun, C., Haiyan, C., Li, Q., & Schvartz, C. (2005). Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead–zinc mining area in Yunnan, China. Environment International, 31(5), 755-762.
  • Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of The Total Environment, 368(2-3), 456-464.
  • Yücel, E., Edtrnelioglau, E., Soydam, S., Celik, S., Colak, G. (2010). Myriophyllum spicatum(Spiked water-milfoil) as a biomonitor of heavy metal pollution in Porsuk Stream/Turkey. Biological Diversity and Conservation, 3(2), 133-144.
  • Zayed, A., Gowthaman, S., & Terry, N. (1998). Phytoaccumulation of trace elements by wetland plants: I. Duckweed. Journal of Environmental Quality, 27(3), 715-721.

Doğal Olarak Yayılış Gösteren Lepidium draba L. Türünün Fitoremediasyon Yönteminde Kullanılabilirliğinin Araştırılması

Yıl 2019, Sayı: 17, 491 - 499, 31.12.2019
https://doi.org/10.31590/ejosat.624424

Öz

Çalışmanın amacı doğal olarak yayılış gösteren Lepidium draba L., türünün fitoremediasyon yönteminde kullanılabilirliğinin araştırılmasıdır. Bu çalışmada Amasya ilinde şehir içi, otoyol, kenar semt ve kontrol olmak üzere 4 lokaliteden 5 farklı örnekleme yapılmıştır. Bitki örnekleri, 2015-2016 yıllarında Ağustos ayı sonunda (vejetatif dönemin sonu) toplandı. Toprakta ortalama olarak ağır metal birikim miktarları Fe >Mn >Co>Ni olarak tespit edilmiştir. Buna göre en yüksek ağır metal konsantrasyonları, trafik yoğunluğu olan şehir içinde bulunmuştur. Topraklarda zenginleşme faktörüne göre, Fe ve Mn belirgin zenginleşme sınıfına girmektedir. Jeobirikim indeksine göre; örnek alınan alanlar Ni, Co, Mn bakımından kirlenmemiş, Fe bakımından ise yol kenarı, kenar semt ve kontrol grubunda orta derece kirlenmiş iken şehir içinde orta–çok kirlenmiş olarak sınıflanmaktadır. Bitkide ortalama olarak ağır metal birikim miktarları Fe>Mn>Ni>Co olarak tespit edilmiştir. Ni bitki ve toprakta toksik sınırın altında, Fe bitkide ve toprakta sınır değerin üstüne, Co bitkide ve toprakta sınır değerin üstüne, Mn ise toprakta sınır değerinin altında iken şehiriçi, yol kenarı ve kenar semt lokalitelerinde toksik sınırın üstünde bulunmuştur. L.draba Ni ve Fe’nin köklerde birikimi, Co ve Mn ise yaprakta birikimin daha yüksek olduğu görülmektedir. Trafik yoğunluğunun yüksek olduğu şehir içinde ağır metal birikimi daha yüksek bulunmuştur. Şehir merkezinde (BCF> 1) 1’ den daha yüksek BCF değerleri bulunmuş olup, yol kenarında Co dışında diğer elementlere ait BCF ve TF değeri 2’nin üstündedir. Şehir merkezi ve yol kenarında en fazla akümüle edilen element Fe olarak bulunmuştur. Buna göre L. draba türünün TF ve BCF değerleri yüksek bulunmuş olup bitkinin hiperakümülatörlük özelliğinin yüksek olduğu tespit edilmiştir.

Kaynakça

  • Afzal, M., Ali, M. I., Munir, M. A., Ahmad, M., Mahmood, Z., Sharif, M. N., & Aslam, M. (2016). Genetic association among morphological traits of Lepidium draba. Bulletin of Biological and Allied Sciences Research, 1(1).
  • Alvarenga, P., Palma, P., Gonçalves, A. P., Fernandes, R. M., Cunha-Queda, A. C., Duarte, E., & Vallini, G. (2007). Evaluation of chemical and ecotoxicological characteristics of biodegradable organic residues for application to agricultural land. Environment International, 33(4), 505-513.
  • Asri, F. Ö., & Sönmez, S. (2006). Ağır metal toksisitesinin bitki metabolizması üzerine etkileri. Derim, 23(2), 36-45.
  • Badr, N., Fawzy, M., & Al-Qahtani, K. M. (2012). Phytoremediation: An ecological solution to heavy-metal-polluted soil and evaluation of plant removal ability. World Applied Sciences Journal, 16(9), 1292-1301.
  • Baker, A. J. M., & Brooks, R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery, 1(2), 81-126.
  • Barbieri, M. (2016). The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J Geol Geophys, 5(237), 2.
  • Blaylock, M. J., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., ... & Raskin, I. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science & Technology, 31(3), 860-865.
  • Brooks, R. R. (1972). Geobotany and biogeochemistry in mineral exploration.
  • Brooks, R. R. (1998). Plants that Hyperaccumulate Heavy Metals: Their Role in Phytoremediation, Microbiology, Archaeology. Mineral Exploration and Phytomining. Wallingford, UK: CAB International.
  • Buat-Menard, P., & Chesselet, R. (1979). Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth and Planetary Science Letters, 42(3), 399-411.
  • Carrigan, R. A., & Erwin, T. C. (1951). Cobalt Determination in Soils by Spectrographic Analysis Following Chemical Preconcentration 1. Soil Science Society of America Journal, 15(C), 145-149.
  • Cheraghi, M., Lorestani, B., & Yousefi, N. (2011). Introduction of hyperaccumulator plants with phytoremediation potential of a lead–zinc mine in Iran. World Acad Sci Eng Technol, 77, 163-8.
  • Demirayak, A., Kutbay, H. G., Sürmen, B., Kılıç, D . (2019). Arsenic accumulation in some natural and exotic tree and shrub species in Samsun Provience (Turkey). Anatolian Journal of Botany, 3(1), 13-17.
  • Doğan, M. (2019). Effect of cadmium, chromium, and lead on micropropagation and physio-biochemical parameters of Bacopa monnieri (L.) Wettst. cultured in vitro. Rendiconti Lincei. Scienze Fisiche e Naturali, 30(2), 351-366.
  • Doğan, M., Karataş, M., & Aasim, M. (2018). Kadmiyum, Krom ve Kurşunun Ceratophyllum demersum L. ve Pogostemon erectus (Dalzell) Kuntze Üzerine Fitotoksisitesinin Değerlendirilmesi. Karaelmas Science and Engineering Journal, 8(2), 543-550.
  • FAO/WHO (2003). Codex Alimentarius International Food Standards Codex Stan-179, Codex Alimentariuscommission.
  • Fergusson, J. E. (1990). Heavy elements: chemistry, environmental impact and health effects. Pergamon.
  • Galal, T. M., & Shehata, H. S. (2015). Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecological Indicators, 48, 244-251.
  • Garbisu, C., Allica, J. H., Barrutia, O., Alkorta, I., & Becerril, J. M. (2002). Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Reviews on Environmental Health, 17(3), 173-188.
  • Georgieva, S., Atanassova, J., Dinev, N. (2015). Metal hyperaccumulation in Cardaria draba (L.) Desv.(Brassicaceae) and heavy metal effects on the nematodes and a weevil associated with the plant roots in sites near a non-ferrous metal smelter in Bulgaria. Soil Sci Agroche. Ecol, 49, 55-64.
  • Ghavri, S. V., Bauddh, K., Kumar, S., & Singh, R. P. (2013). Bioaccumulation and translocation potential of Na+ and K+ in native weeds grown on industrially contaminated soil. Int J ChemTech Res, 5(4), 1869-1875.
  • Johansson, C., Norman, M., & Burman, L. (2009). Road traffic emission factors for heavy metals. Atmospheric Environment, 43(31), 4681-4688.
  • Kabata-Pendias, A., & Dudka, S. (1991). Trace metal contents ofTaraxacum officinale (dandelion) as a convenient environmental indicator. Environmental Geochemistry and Health, 13(2), 108-113.
  • Kaçar, B., & Katkat, V. (2010). Bitki Besleme (Plant Nutrition)(5. Baskı). Nobel Yayın Dağıtım.
  • Kalender, L., & Alçiçek, Ö. N. (2016). Astragalus angustifolius, Artemisia ve Juncus effusus' un Uranyum ve Toryum için Biyoakümülatör Özellikleri. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 28(2), 267-273.
  • Kılıç, D. (2019). Investigation of heavy metal accumulation and biomonitoring of Calepina irregularis species growing in Amasya (Turkey) province. Anatolian Journal of Botany, 3(2), 44-50.
  • Ladislas, S., El-Mufleh, A., Gérente, C., Chazarenc, F., Andrès, Y., & Béchet, B. (2012). Potential of aquatic macrophytes as bioindicators of heavy metal pollution in urban stormwater runoff. Water, Air, & Soil Pollution, 223(2), 877-888.
  • Luu, T. D., Truong, P., Mammucari, R., Tam, T., & Foster, N. (2009). Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. International Journal of Phytoremediation, 11(8), 664-691.
  • Macek, T., Kotrba, P., Svatos, A., Novakova, M., Demnerova, K., & Mackova, M. (2008). Novel roles for genetically modified plants in environmental protection. Trends in biotechnology, 26(3), 146-152.
  • McGrath, S. P., Zhao, F. J., & Lombi, E. (2001). Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant and Soil, 232(1-2), 207-214.
  • Mellem, J. J., Baijnath, H., & Odhav, B. (2012). Bioaccumulation of Cr, Hg, As, Pb, Cu and Ni with the ability for hyperaccumulation by Amaranthus dubius. African Journal of Agricultural Research, 7(4), 591-596.
  • Micevska, O., Hristovski, S., & Melovski, L. (2019). The impact of the ferro-nickel smelter’s fugitive dust emission on heavy metal content in soils and whitetop (Lepidium draba l.) in Kavadarcı, Republic of Macedonia. Environmental pollution, 15, 16.
  • Mingorance, M. D., Valdes, B., & Oliva, S. R. (2007). Strategies of heavy metal uptake by plants growing under industrial emissions. Environment International, 33(4), 514-520.
  • Müller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2, 108-118.
  • Nouri, J., Lorestani, B., Yousefi, N., Khorasani, N., Hasani, A. H., Seif, F., & Cheraghi, M. (2011). Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead–zinc mine (Hamedan, Iran). Environmental Earth Sciences, 62(3), 639-644.
  • Oven, M., Grill, E., Golan-Goldhirsh, A., Kutchan, T. M., & Zenk, M. H. (2002). Increase of free cysteine and citric acid in plant cells exposed to cobalt ions. Phytochemistry, 60(5), 467-474.
  • Özkul, C., Acar, R. U., Köprübaşı, N., Er, A. E., Kızılkaya, H. İ., Metin, M., & Şenel, M. N. (2018). Altıntaş (Kütahya-Türkiye) ovası tarım topraklarında ağır metal kirliliğinin araştırılması, öncel çalışma. Uygulamalı Yerbilimleri Dergisi, 17(1), 13-26.
  • Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184(1-4), 105-126.
  • Reeves, R. D., & Brooks, R. R. (1983). Hyperaccumulation of lead and zinc by two metallophytes from mining areas of Central Europe. Environmental pollution series A, Ecological and Biological, 31(4), 277-285.
  • Riahi, M. A., Nasiri, B. M., Yousefi, K., & Mohammadi, M. (2015). Investigation of the ability of Lepidium draba L. seedlings in zinc and silver ions absorption and effect of the ions on morphological and biochemical characteristics of the seedlings. Journal of Cell & Tissue, 6(1), 59-70.
  • Salt, D. E., & Rauser, W. E. (1995). MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiology, 107(4), 1293-1301.
  • Scurfield, G. (1962). Cardaria Draba (L.) Desv. Journal of Ecology, 50(2), 489-499.
  • Smical, A. I., Hotea, V., Oros, V., Juhasz, J., & Pop, E. (2008). Studies on transfer and bioaccumulation of heavy metals from soil into lettuce. Environmental Engineering and Management Journal, 7(5), 609-615.
  • Susarla, S., Medina, V. F., & McCutcheon, S. C. (2002). Phytoremediation: an ecological solution to organic chemical contamination. Ecological Engineering, 18(5), 647-658.
  • Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39(6), 611-627.
  • Van Der Ent, A., Echevarria, G., & Tibbett, M. (2016). Delimiting soil chemistry thresholds for nickel hyperaccumulator plants in Sabah (Malaysia). Chemoecology, 26(2), 67-82.
  • Vanlı, Ö. (2007). Pb, Cd, B Elementlerinin Topraklardan Şelat Destekli Fitoremediasyon Yöntemiyle Giderilmesi. (Doctoral dissertation, Fen Bilimleri Enstitüsü).
  • Vatamaniuk, O. K., Mari, S., Lu, Y. P., & Rea, P. A. (2000). Mechanism of heavy metal ion activation of phytochelatin (PC) synthase blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. Journal of Biological Chemistry, 275(40), 31451-31459.
  • Yanqun, Z., Yuan, L., Jianjun, C., Haiyan, C., Li, Q., & Schvartz, C. (2005). Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead–zinc mining area in Yunnan, China. Environment International, 31(5), 755-762.
  • Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of The Total Environment, 368(2-3), 456-464.
  • Yücel, E., Edtrnelioglau, E., Soydam, S., Celik, S., Colak, G. (2010). Myriophyllum spicatum(Spiked water-milfoil) as a biomonitor of heavy metal pollution in Porsuk Stream/Turkey. Biological Diversity and Conservation, 3(2), 133-144.
  • Zayed, A., Gowthaman, S., & Terry, N. (1998). Phytoaccumulation of trace elements by wetland plants: I. Duckweed. Journal of Environmental Quality, 27(3), 715-721.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Burak Sürmen 0000-0002-4055-613X

Dudu Duygu Kılıç 0000-0001-6425-6062

Hamdi Güray Kutbay 0000-0001-9511-9159

Emine Ebru Tuna Bu kişi benim

Yayımlanma Tarihi 31 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Sayı: 17

Kaynak Göster

APA Sürmen, B., Kılıç, D. D., Kutbay, H. G., Tuna, E. E. (2019). Doğal Olarak Yayılış Gösteren Lepidium draba L. Türünün Fitoremediasyon Yönteminde Kullanılabilirliğinin Araştırılması. Avrupa Bilim Ve Teknoloji Dergisi(17), 491-499. https://doi.org/10.31590/ejosat.624424