Yıldırım doğal bir elektriksel boşalma olayıdır. Yüksek akım ve gerilimin ani boşalması çevresi için tehlikeli sonuçlar doğurabilmektedir. Genellikle yıldırımlar bulutlar arasında, bulutun kendi içinde veya bulutla yeryüzü arasında gerçekleşir. Seyir halindeki hava araçları da yıldırım çarpma riskiyle karşı karşıyadır. Ticari havayolu uçakları kabaca her yıl iki defa yıldırım çarpmasına maruz kalmaktadır. Dolayısıyla yıldırım çarpması uçaklar için alışılmamış bir tehlike değildir ve uçuş güvenliğini hissedilebilir derecede tehlikeye sokabilmektedir. İletkenliği geleneksel metallere göre çok daha az olan yada iletkenlik özelliği bulunmayan karbon elyaf, cam elyaf, aramid elyaf gibi malzemelerin takviye olarak kullanıldığı kompozit malzemelerin havacılık sektöründe kullanımının artması, yıldırım kaynaklı hasarların riskini ve şiddetini arttırmaktadır. Uçakları yıldırım çarpması kaynaklı yanma, erime, patlama, delinme, delaminasyon, yakıt buharının alev alması vb. doğrudan etkilere ve aviyoniklerde bozulma ve hasarlara neden olan dolaylı etkilere karşı korumak gerekmektedir. Bu nedenle, yıldırım çarpma mekanizmasını ve uçakla yıldırım arasındaki etkileşimi anlamak gerekmektedir. Günümüze kadar bu konuda birçok çalışma yapılmıştır. Bu çalışmada yıldırım-uçak etkileşimini anlamak amacıyla uçaklarda yıldırım çarpma vakalarıyla ilgili istatistiksel verilere değinilmiştir. Ek olarak, yıldırım çarpma mekanizmasının uçakta nasıl meydana geldiği ve uçak yapısalları üzerindeki etkileri incelenmiştir. Uçakların yıldırımdan korunması amacıyla belirlenen ve evrensel olarak da kullanılan yıldırım parametreleri ve uçakların yıldırım bölgelerinin belirlenme süreçleri ve kıstaslarına değinilmiştir.
Yıldırım Çarpması Uçak Yıldırım Etkileşimi Yıldırım Parametreleri Yıldırım Bölgeleri Yıldırım Kaynaklı Hasarlar
Lightning is a natural electrical discharge phenomenon. Sudden discharge of high current and voltage can have dangerous consequences for the environment. Usually lightning strikes between clouds, inside the cloud itself, or between the cloud and the earth. On board aircraft are also at risk of lightning strikes. Commercial airline planes are exposed to lightning strikes roughly twice a year. Therefore, lightning strike is not an unusual danger for aircrafs and can endanger the flight safety. The increase in the use of composite materials in reinforcing compositions of materials such as carbon fiber, glass fiber, aramid fiber, whose conductivity is much less than conventional metals, or which do not have conductivity, increases the risk and severity of damage due to lightning. It is necessary to protect aircrafts against direct effects such as combustion, melting, explosion, puncture, delamination, ignition of fuel vapors etc. caused by lightning strikes and indirect effects that cause disruption and damage in avionics. It is necessary to protect the aircraft against the direct and indirect effects of lightning strike. Therefore, it is necessary to understand the lightning strike mechanism and the interaction between aircraft and lightning. To date, many studies have been done on this subject and in this study, statistical data on lightning strikes of aircrafts have been mentioned in order to understand the lightning-aircraft interaction. In addition, how the lightning strike mechanism occurred on the aircraft and its effects on aircraft structures were examined. Lightning parameters, which are determined to protect the aircraft from lightning and used universally, and the determination processes and criteria of the lightning zones of the aircraft are mentioned.
Lightning Strike Aircraft Lightning Interaction Lightning Parameters Lightning Zones Lightning Damages
Birincil Dil | Türkçe |
---|---|
Konular | Mühendislik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 1 Nisan 2020 |
Yayımlandığı Sayı | Yıl 2020 Ejosat Özel Sayı 2020 (ARACONF) |