Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Earthquake Behavior of Reinforced-Concrete Buildings Built on Soil Slope

Yıl 2020, Sayı: 20, 162 - 170, 31.12.2020
https://doi.org/10.31590/ejosat.757763

Öz

The soils on which the structures will be built can be sloping. The soil slope was mostly eliminated; therefore, different levels on foundations were prevented. , the ground slope is eliminated and foundations sitting at different levels are prevented. But in some cases the structure can be built according to the soil slope. The vertical structural elements on the ground story can be built with different heights according to the soil slope. 3%, 5% and 10% soil slopes were taken into account in this study. Structural analysis was performed for the reference reinforced-concrete building model without soil slope in order to compare the results. Static pushover and eigen value analyzes were carried out for four different building models. Ground story columns heights were chosen as one variable according to the soil slope in all structural models. All other values that are the basis of structural analysis are taken as constant. The periods, base shear force, elastic and effective rigidity, target displacements for three different damage status was calculated separately for all structural models. Additionally, the initial and last damage status was obtained for all structural models. . Short columns formed due to the soil slope negatively affect the earthquake behavior of the building. Due to the increase of the soil slope, the decrease in column heights on the ground story increases the stiffness values, decreases the period values and increases the seismic demands of the structural models. However, in structural models with high soil slope, initial damages occurred under lower load factors. The initial damages occurred in columns with the lowest heights due to the soil slope. The displacement demands decreased in building models, where the soil slope of the soil increased.

Kaynakça

  • Ademovic, N., Hrasnica, M., & Oliveira, D.V. (2013). Pushover analysis and failure pattern of a typical masonry residential building in Bosnia and Herzegovina. Engineering Structures, 50, 13- 29. https://doi.org/10.1016/j.engstruct.2012.11.031
  • Ademović, N., & Hrasnica, M. (2015). Capacity degradation and crack pattern development in a multi-storey unreinforced masonry building. Građevinar, 67(04), 351-361. https://doi.org/10.14256/JCE.1191.2014
  • Antoniou, S., & Pinho, R. (2003). Seismostruct – Seismic Analysis program by Seismosoft. Technical manual and user manual.
  • Aksoylu, C., & Arslan, M. H. (2019). Çerçeve+perde türü betonarme binaların periyod hesaplarının TBDY-2019 yönetmeliğine göre ampirik olarak değerlendirilmesi. Uludağ University Journal of The Faculty of Engineering, 24(3), 365-382. https://doi.org/10.17482/uumfd.603437
  • Arslan, M. H. (2010). An evaluation of effective design parameters on earthquake performance of RC buildings using neural networks. Engineering Structures, 32(7), 1888-1898. https://doi.org/10.1016/j.engstruct.2010.03.010
  • Arslan, M. H., Köroğlu, M. A., & Köken, A. (2008). Binaların yapısal performansının statik itme analizi ile belirlenmesi. Yapı Teknolojileri Elektronik Dergisi, 4(2), 71-84.
  • Bal, İ.E., Tezcan, S. S., & Gülay, F.G. (2007). Betonarme binaların göçme riskinin belirlenmesi için P25 hızlı değerlendirme yöntemi. Altıncı Ulusal Deprem Mühendisliği Konferansı, 16-20 Ekim 2007, İstanbul.
  • Chopra, A. K., & Goel, R. K. (2002). A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engineering & Structural Dynamics, 31(3), 561-582. https://doi.org/10.1002/eqe.144
  • Caglar, N., Demir, A., Ozturk, H., & Akkaya, A. (2015). A simple formulation for effective flexural stiffness of circular reinforced concrete columns. Engineering Applications of Artificial Intelligence, 38, 79-87. https://doi.org/10.1016/j.engappai.2014.10.011
  • Estêvão, J. M., & Oliveira, C. S. (2015). A new analysis method for structural failure evaluation. Engineering Failure Analysis, 56, 573-584. https://doi.org/10.1016/j.engfailanal.2014.08.009
  • Ghosh, R., & Debbarma, R. (2017). Performance evaluation of setback buildings with open ground storey on plain and sloping ground under earthquake loadings and mitigation of failure. International Journal of Advanced Structural Engineering, 9(2), 97. https://doi.org/10.1007/s40091-017-0151-3
  • Hadzima-Nyarko, M., & Kalman Sipos, T. (2017). Insights from existing earthquake loss assessment research in Croatia. Earthquakes and Structures, 13(4), 365-375. https://doi.org/10.12989/eas.2017.13.4.401
  • Hsiao, F. P., Oktavianus, Y., & Ou, Y. C. (2015). A pushover seismic analysis method for asymmetric and tall buildings. Journal of the Chinese Institute of Engineers, 38(8), 991-1001.https://doi.org/10.1080/02533839.2015.1056553
  • Işık, E., Özdemir, M., Karaşin, İ.B., Karaşin, A., (2019). Betonarme yapılarda kullanılan malzeme modellerinin karşılaştırılması. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8(3), 968-984. https://doi.org/10.17798/bitlisfen.520354
  • Işık, E., Özdemir, M., & Karaşin, İ. B. (2018). Performance analysis of steel structures with A3 irregularities. International Journal of Steel Structures, 18(3), 1083-1094. https://doi.org/10.1007/s13296-018-0046-6
  • Işık, E., & Özdemir, M. (2017). Performance based assessment of steel frame structures by different material models. International Journal of Steel Structures, 17(3), 1021-1031. https://doi.org/10.1007/s13296-017-9013-x
  • Isik, E., Isik, M. F., & Bulbul, M. A. (2017). Web based evaluation of earthquake damages for reinforced concrete buildings. Earthquakes and Structures, 13(4), 387-396. https://doi.org/10.12989/eas.2017.13.4.423
  • Işık, E., & Kutanis M., (2015). Performance based assessment for existing residential buildings in Lake Van basin and seismicity of the region. Earthquakes and Structures, 9(4), 893-910. https://doi.org/10.12989/eas.2015.9.4.893
  • Işık, E. (2016). Consistency of the rapid assessment method for reinforced concrete buildings. Earthquakes and Structures, 11(5), 873-885. https://doi.org/10.12989/eas.2016.11.5.873
  • Işık, E. (2013). The evaluation of existing buildings Bitlis province using a visual screening method, SDU, Journal of Natural and Applied Sciences, 17(1), 173-178.
  • Karaşin, İ. B., Işık, E., Karaşin, A., & Özdemir, M., (2017). Betonarme Yapılarda Tepe-Yamaç Etkisinin Yapı Performansına Etkisi. International Conference on Multidisciplinary, Science, Engineering and Technology (IMESET’17), Bitlis, Türkiye.
  • Khadiranaikar, R. B., & Masali, A. (2014). Seismic performance of buildings resting on sloping ground–a review. IOSR J Mech Civ Eng (IOSR-JMCE), 11(3), 12-19. https://doi.org/10.9790/1684-11331219
  • Kutanis, M., Boru, E. O., & Işık, E. (2017). Alternative instrumentation schemes for the structural identification of the reinforced concrete field test structure by ambient vibration measurements. KSCE Journal of Civil Engineering, 21(5), 1793-1801. https://doi.org/10.1007/s12205-016-0758-0
  • Mander, J. B., Priestley, M. J. N., & Park, R., (1998). Theoretical stress-strain model for confined concrete. Journal of Structural Engineerings, 114(8), 1804–1825. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  • Menegotto, M., & Pinto, P. E., (1973). Method of analysis for cyclically loaded rc. plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending. symposium on the resistance and ultimate deformability of structures acted on by well defined repeated loads, in International Association for Bridge and Structural Engineering, Zurich, Switzerland, 15–22.
  • Mohammad, Z., Baqi, A., & Arif, M. (2017). Seismic response of RC framed buildings resting on hill slopes. Procedia Engineering, 173, 1792-1799. https://doi.org/10.1016/j.proeng.2016.12.221
  • Nikoo, M., Hadzima-Nyarko, M., Khademi, F., & Mohasseb, S. (2017). Estimation of fundamental period of reinforced concrete shear wall buildings using self organization feature map. Structural Engineering and Mechanics, 63(2), 237-249. https://doi.org/10.12989/sem.2017.63.2.237
  • Ordu, E., & Özkan, M. T. (2006). Three-dimensional finite element analysis of the seismic behavior of pile foundations. İtü Dergisi/d, 5(2), 27-34.
  • Ozcebe, G., Yucemen, M. S., Aydogan, V., & Yakut, A. (2003). Preliminary seismic vulnerability assessment of existing reinforced concrete buildings in Turkey. In Seismic Assessment and Rehabilitation of Existing Buildings (pp. 29-42). Springer, Dordrecht.
  • Öztürk, H., Demir, A., Dok, G., & Güç, H. (2017). Betonarme kolonlarin etkin kesit rijitlikleri üzerine yönetmeliklerin yaklaşimlari. 4. Uluslararası Deprem Mühendisliği ve Sismoloji Konferansı 11-13 Ekim 2017, Eskişehir.
  • Pinto, P. E. (2005). The Eurocode 8-Part 3: the new European Code for the seismic assessment of existing structures.
  • Shakib, H., & Pirizadeh, M. (2013). Probabilistic seismic performance assessment of setback buildings under bidirectional excitation. Journal of Structural Engineering, 140(2), 04013061.https://doi.org/10.1061/(ASCE)ST.1943-541X.0000835
  • SeismoStruct v6.5 (2013). A computer program for static and dynamic nonlinear analysis of framed structures. Seismosoft.
  • Šipoš, T. K., & Hadzima-Nyarko, M. (2017). Rapid seismic risk assessment. International Journal of Disaster Risk Reduction, 24, 348-360. https://doi.org/10.1016/j.ijdrr.2017.06.025
  • Sreerama, A. K., & Ramancharla, P. K. (2013, October). Earthquake behavior of reinforced concrete framed buildings on hill slopes. In International Symposium on New Technologies for Urban Safety of Mega Cities in Asia (USMCA 2013).
  • Sucuoğlu, H., Yazgan, U., & Yakut, A. (2007). A screening procedure for seismic risk assessment in urban building stocks. Earthquake Spectra, 23(2), 441-458. https://doi.org/10.1193/1.2720931
  • Tekeli, H., Dilmac, H., Demir, F., Gencoglu, M., & Guler, K. (2017). Shear stress indicator to predict seismic performance of residential RC buildings. Computer and Concrete, 19(3), 283-291.https://doi.org/10.12989/cac.2017.19.3.283
  • Tezcan, S. S., Bal, I. E., & Gulay, F. G. (2011). P25 scoring method for the collapse vulnerability assessment of R/C buildings. Journal of the Chinese Institute of Engineers, 34(6), 769-781.https://doi.org/10.1080/02533839.2011.591548
  • Ulutaş, H., Dilmac, H., Tekeli, H., & Demir, F. (2019). Okul binalarında bulunması gereken perde duvar oranı üzerine bir çalışma. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(1), 1-10. https://doi.org/10.29048/makufebed.500974
  • Yakut, A., Erberik, M. A., Ilki, A., Sucuoğlu, H., & Akkar, S. (2014). Rapid seismic assessment procedures for the Turkish building stock. In Seismic Evaluation and Rehabilitation of Structures (pp. 15-35). Springer, Cham.
  • Yakut, A. (2004). Preliminary seismic performance assessment procedure for existing RC buildings. Engineering Structures, 26(10), 1447-1461. https://doi.org/10.1016/j.engstruct.2004.05.011
  • Xian, L., He, Z., & Ou, X. (2016). Incorporation of collapse safety margin into direct earthquake loss estimate. Earthquakes and Structures, 10(2), 429-450. https://doi.org/10.12989/eas.2016.10.2.429

Eğimli Zeminlerde İnşa Edilen Betonarme Binaların Deprem Davranışlarının İncelenmesi

Yıl 2020, Sayı: 20, 162 - 170, 31.12.2020
https://doi.org/10.31590/ejosat.757763

Öz

Yapıların inşa edileceği zeminler eğimli olabilmektedir. Çoğu zaman tabii zemin eğimi ortadan kaldırılarak farklı kot seviyelerine oturan temeller engellenmektedir. Ancak bazı durumlarda yapı zemin eğimine göre inşa edilebilmektedir. Bu gibi durumlarda yapının zemin katında bulunan düşey taşıyıcı elemanlar farklı yüksekliklerde inşa edilebilmektedir. Bu çalışma kapsamında 3%, 5% ve 10% zemin eğimleri dikkate alınmıştır. Elde edilen sonuçların karşılaştırılabilmesi adına zemin eğimin dikkate alınmadığı referans betonarme bina için hesaplamalar yapılmıştır. Oluşturulan dört farklı yapı modeli için statik itme ve özdeğer analizleri yapılmıştır. Yapısal modellerin tamamında değişken olarak sadece zemin kat kolon yükseklikleri seçilmiştir. Yapısal analizlere esas olan diğer tüm değerler sabit olarak alınmıştır. Her bir yapısal model için periyot, yer değiştirme, taban kesme kuvvet, elastik ve efektif rijitlik ile hasar durumları için üç farklı hedef deplasman değerleri ayrı ayrı hesaplanmıştır. Her bir yapı modeli için ilk ve son hasar şekilleri elde edilmiştir. Zemin eğiminden dolayı oluşan kısa kolonlar yapının deprem performansını olumsuz olarak etkilemektedir. Zemin eğiminin artmasından dolayı zemin katta yer alan kolon yüksekliklerindeki azalma yapının rijitlik değerlerini arttırmakta, periyot değerlerini azaltıp, yapının sismik kapasitesini arttırmaktadır. Ancak zemin eğiminin fazla olduğu yapı modellerinde daha düşük yük faktörleri altında ilk hasarlar meydana gelmiştir. Oluşan ilk hasarlar eğimden dolayı en düşük yüksekliklere sahip kolonlarda oluşmuştur. Yer değiştirme istem talepleri zemin eğiminin arttığı yapı modellerinde azalmıştır.

Kaynakça

  • Ademovic, N., Hrasnica, M., & Oliveira, D.V. (2013). Pushover analysis and failure pattern of a typical masonry residential building in Bosnia and Herzegovina. Engineering Structures, 50, 13- 29. https://doi.org/10.1016/j.engstruct.2012.11.031
  • Ademović, N., & Hrasnica, M. (2015). Capacity degradation and crack pattern development in a multi-storey unreinforced masonry building. Građevinar, 67(04), 351-361. https://doi.org/10.14256/JCE.1191.2014
  • Antoniou, S., & Pinho, R. (2003). Seismostruct – Seismic Analysis program by Seismosoft. Technical manual and user manual.
  • Aksoylu, C., & Arslan, M. H. (2019). Çerçeve+perde türü betonarme binaların periyod hesaplarının TBDY-2019 yönetmeliğine göre ampirik olarak değerlendirilmesi. Uludağ University Journal of The Faculty of Engineering, 24(3), 365-382. https://doi.org/10.17482/uumfd.603437
  • Arslan, M. H. (2010). An evaluation of effective design parameters on earthquake performance of RC buildings using neural networks. Engineering Structures, 32(7), 1888-1898. https://doi.org/10.1016/j.engstruct.2010.03.010
  • Arslan, M. H., Köroğlu, M. A., & Köken, A. (2008). Binaların yapısal performansının statik itme analizi ile belirlenmesi. Yapı Teknolojileri Elektronik Dergisi, 4(2), 71-84.
  • Bal, İ.E., Tezcan, S. S., & Gülay, F.G. (2007). Betonarme binaların göçme riskinin belirlenmesi için P25 hızlı değerlendirme yöntemi. Altıncı Ulusal Deprem Mühendisliği Konferansı, 16-20 Ekim 2007, İstanbul.
  • Chopra, A. K., & Goel, R. K. (2002). A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engineering & Structural Dynamics, 31(3), 561-582. https://doi.org/10.1002/eqe.144
  • Caglar, N., Demir, A., Ozturk, H., & Akkaya, A. (2015). A simple formulation for effective flexural stiffness of circular reinforced concrete columns. Engineering Applications of Artificial Intelligence, 38, 79-87. https://doi.org/10.1016/j.engappai.2014.10.011
  • Estêvão, J. M., & Oliveira, C. S. (2015). A new analysis method for structural failure evaluation. Engineering Failure Analysis, 56, 573-584. https://doi.org/10.1016/j.engfailanal.2014.08.009
  • Ghosh, R., & Debbarma, R. (2017). Performance evaluation of setback buildings with open ground storey on plain and sloping ground under earthquake loadings and mitigation of failure. International Journal of Advanced Structural Engineering, 9(2), 97. https://doi.org/10.1007/s40091-017-0151-3
  • Hadzima-Nyarko, M., & Kalman Sipos, T. (2017). Insights from existing earthquake loss assessment research in Croatia. Earthquakes and Structures, 13(4), 365-375. https://doi.org/10.12989/eas.2017.13.4.401
  • Hsiao, F. P., Oktavianus, Y., & Ou, Y. C. (2015). A pushover seismic analysis method for asymmetric and tall buildings. Journal of the Chinese Institute of Engineers, 38(8), 991-1001.https://doi.org/10.1080/02533839.2015.1056553
  • Işık, E., Özdemir, M., Karaşin, İ.B., Karaşin, A., (2019). Betonarme yapılarda kullanılan malzeme modellerinin karşılaştırılması. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8(3), 968-984. https://doi.org/10.17798/bitlisfen.520354
  • Işık, E., Özdemir, M., & Karaşin, İ. B. (2018). Performance analysis of steel structures with A3 irregularities. International Journal of Steel Structures, 18(3), 1083-1094. https://doi.org/10.1007/s13296-018-0046-6
  • Işık, E., & Özdemir, M. (2017). Performance based assessment of steel frame structures by different material models. International Journal of Steel Structures, 17(3), 1021-1031. https://doi.org/10.1007/s13296-017-9013-x
  • Isik, E., Isik, M. F., & Bulbul, M. A. (2017). Web based evaluation of earthquake damages for reinforced concrete buildings. Earthquakes and Structures, 13(4), 387-396. https://doi.org/10.12989/eas.2017.13.4.423
  • Işık, E., & Kutanis M., (2015). Performance based assessment for existing residential buildings in Lake Van basin and seismicity of the region. Earthquakes and Structures, 9(4), 893-910. https://doi.org/10.12989/eas.2015.9.4.893
  • Işık, E. (2016). Consistency of the rapid assessment method for reinforced concrete buildings. Earthquakes and Structures, 11(5), 873-885. https://doi.org/10.12989/eas.2016.11.5.873
  • Işık, E. (2013). The evaluation of existing buildings Bitlis province using a visual screening method, SDU, Journal of Natural and Applied Sciences, 17(1), 173-178.
  • Karaşin, İ. B., Işık, E., Karaşin, A., & Özdemir, M., (2017). Betonarme Yapılarda Tepe-Yamaç Etkisinin Yapı Performansına Etkisi. International Conference on Multidisciplinary, Science, Engineering and Technology (IMESET’17), Bitlis, Türkiye.
  • Khadiranaikar, R. B., & Masali, A. (2014). Seismic performance of buildings resting on sloping ground–a review. IOSR J Mech Civ Eng (IOSR-JMCE), 11(3), 12-19. https://doi.org/10.9790/1684-11331219
  • Kutanis, M., Boru, E. O., & Işık, E. (2017). Alternative instrumentation schemes for the structural identification of the reinforced concrete field test structure by ambient vibration measurements. KSCE Journal of Civil Engineering, 21(5), 1793-1801. https://doi.org/10.1007/s12205-016-0758-0
  • Mander, J. B., Priestley, M. J. N., & Park, R., (1998). Theoretical stress-strain model for confined concrete. Journal of Structural Engineerings, 114(8), 1804–1825. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  • Menegotto, M., & Pinto, P. E., (1973). Method of analysis for cyclically loaded rc. plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending. symposium on the resistance and ultimate deformability of structures acted on by well defined repeated loads, in International Association for Bridge and Structural Engineering, Zurich, Switzerland, 15–22.
  • Mohammad, Z., Baqi, A., & Arif, M. (2017). Seismic response of RC framed buildings resting on hill slopes. Procedia Engineering, 173, 1792-1799. https://doi.org/10.1016/j.proeng.2016.12.221
  • Nikoo, M., Hadzima-Nyarko, M., Khademi, F., & Mohasseb, S. (2017). Estimation of fundamental period of reinforced concrete shear wall buildings using self organization feature map. Structural Engineering and Mechanics, 63(2), 237-249. https://doi.org/10.12989/sem.2017.63.2.237
  • Ordu, E., & Özkan, M. T. (2006). Three-dimensional finite element analysis of the seismic behavior of pile foundations. İtü Dergisi/d, 5(2), 27-34.
  • Ozcebe, G., Yucemen, M. S., Aydogan, V., & Yakut, A. (2003). Preliminary seismic vulnerability assessment of existing reinforced concrete buildings in Turkey. In Seismic Assessment and Rehabilitation of Existing Buildings (pp. 29-42). Springer, Dordrecht.
  • Öztürk, H., Demir, A., Dok, G., & Güç, H. (2017). Betonarme kolonlarin etkin kesit rijitlikleri üzerine yönetmeliklerin yaklaşimlari. 4. Uluslararası Deprem Mühendisliği ve Sismoloji Konferansı 11-13 Ekim 2017, Eskişehir.
  • Pinto, P. E. (2005). The Eurocode 8-Part 3: the new European Code for the seismic assessment of existing structures.
  • Shakib, H., & Pirizadeh, M. (2013). Probabilistic seismic performance assessment of setback buildings under bidirectional excitation. Journal of Structural Engineering, 140(2), 04013061.https://doi.org/10.1061/(ASCE)ST.1943-541X.0000835
  • SeismoStruct v6.5 (2013). A computer program for static and dynamic nonlinear analysis of framed structures. Seismosoft.
  • Šipoš, T. K., & Hadzima-Nyarko, M. (2017). Rapid seismic risk assessment. International Journal of Disaster Risk Reduction, 24, 348-360. https://doi.org/10.1016/j.ijdrr.2017.06.025
  • Sreerama, A. K., & Ramancharla, P. K. (2013, October). Earthquake behavior of reinforced concrete framed buildings on hill slopes. In International Symposium on New Technologies for Urban Safety of Mega Cities in Asia (USMCA 2013).
  • Sucuoğlu, H., Yazgan, U., & Yakut, A. (2007). A screening procedure for seismic risk assessment in urban building stocks. Earthquake Spectra, 23(2), 441-458. https://doi.org/10.1193/1.2720931
  • Tekeli, H., Dilmac, H., Demir, F., Gencoglu, M., & Guler, K. (2017). Shear stress indicator to predict seismic performance of residential RC buildings. Computer and Concrete, 19(3), 283-291.https://doi.org/10.12989/cac.2017.19.3.283
  • Tezcan, S. S., Bal, I. E., & Gulay, F. G. (2011). P25 scoring method for the collapse vulnerability assessment of R/C buildings. Journal of the Chinese Institute of Engineers, 34(6), 769-781.https://doi.org/10.1080/02533839.2011.591548
  • Ulutaş, H., Dilmac, H., Tekeli, H., & Demir, F. (2019). Okul binalarında bulunması gereken perde duvar oranı üzerine bir çalışma. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(1), 1-10. https://doi.org/10.29048/makufebed.500974
  • Yakut, A., Erberik, M. A., Ilki, A., Sucuoğlu, H., & Akkar, S. (2014). Rapid seismic assessment procedures for the Turkish building stock. In Seismic Evaluation and Rehabilitation of Structures (pp. 15-35). Springer, Cham.
  • Yakut, A. (2004). Preliminary seismic performance assessment procedure for existing RC buildings. Engineering Structures, 26(10), 1447-1461. https://doi.org/10.1016/j.engstruct.2004.05.011
  • Xian, L., He, Z., & Ou, X. (2016). Incorporation of collapse safety margin into direct earthquake loss estimate. Earthquakes and Structures, 10(2), 429-450. https://doi.org/10.12989/eas.2016.10.2.429
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ercan Işık 0000-0001-8057-065X

İbrahim Baran Karasin 0000-0001-5990-1215

Ali Emre Ulu 0000-0001-7499-3891

Yayımlanma Tarihi 31 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Sayı: 20

Kaynak Göster

APA Işık, E., Karasin, İ. B., & Ulu, A. E. (2020). Eğimli Zeminlerde İnşa Edilen Betonarme Binaların Deprem Davranışlarının İncelenmesi. Avrupa Bilim Ve Teknoloji Dergisi(20), 162-170. https://doi.org/10.31590/ejosat.757763