Kanser Hastalığı Tespitine Yönelik ISM Bandında Çalışan Mikroşerit Yama Yapılı İki Antenin Elektromanyetik Alan ve Saçılma Parametreleri Verilerinin Değerlendirilmesi ve Kıyaslanması
Yıl 2020,
Ejosat Özel Sayı 2020 (ICCEES), 237 - 244, 05.10.2020
Rabia Top
,
Seyfettin Sinan Gültekin
,
Dilek Uzer
Öz
Kanser hastalıkları günümüzde birçok insanın hayatını önemli ölçüde etkilemektedir. Teşhis ve tedavi süreci ise oldukça zor ve ağrılıdır. Özellikle kanserli dokunun yapısının belirlendiği ve tedavinin şekillenmesine yardımcı olan patolojik doku örneklerinin sonucuna kısa sürede ulaşmak önemlidir. Günümüzde bu sonuçlara ulaşmak günler hatta aylar sürebilmektedir. Bu çalışmada biyomedikal uygulamalarda birçok avantajı sebebi ile sıkça kullanılan mikroşerit anten yapıları çalışılmaktadır. ISM band bölgesinde bulunan 2.45 GHz ve 5.8 GHz ışıma bölgelerinde çalışan iki adet antenin elektromanyetik alan ve saçılma parametre verileri incelenmekte ve kıyaslanmaktadır. Tümörlü ve normal deri dokusunun patolojik numune dönüştürülmüş hali Ansys’in HFSS programında simüle edilerek kıyaslanmaktadır. Her iki antenin hem 2.45 GHz’deki hem de 5.8 GHz’deki değerleri simülasyonlardan elde edilerek hem elektrik alan değerleri hem de S-parametre değerleri kıyaslanmıştır. Elde edilen sonuçlara bakıldığında, 2.45 GHz bölgesinde ışıma yapan anten sonuçlarından elde edilen verilerdeki farklılık oranları yüzde olarak daha fazladır. Böylelikle bu amaçla kullanılan anten yapılarında 2.45 GHz ışıma bölgesini kullanmanın 5.8 GHz ışıma bölgesini kullanmaya göre daha avantajlı olduğunu söylemek mümkündür.
Kaynakça
- Asif, S. M., Hansen, J. W., Iftikhar, A., Ewert, D. L., & Braaten, B. D. (2019). Computation of available RF power inside the body and path loss using in vivo experiments. IET Microwaves, Antennas and Propagation, 13(1), 122–126. https://doi.org/10.1049/iet-map.2018.5582
- Bao, Z. (2019). Comparative Study of Dual-Polarized and Circularly-Polarized Antennas at 2.45 GHz for Ingestible Capsules. IEEE Transactions on Antennas and Propagation, 67(3), 1488–1500. https://doi.org/10.1109/TAP.2018.2888819
- Caspers, F. (2011). RF engineering basic concepts: S-parameters. CAS 2010 - CERN Accelerator School: RF for Accelerators, Proceedings, (June), 67–93.
- Dey, S, Letters, R. M.-M. and O. T., & 1996, undefined. (n.d.). Compact microstrip patch antenna. Wiley Online Library. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1098-2760(199609)13:1%3C12::AID-MOP4%3E3.0.CO;2-Q?casa_token=KJKDr8IHH70AAAAA:7a_CJXaWYQtXlPvOPBJt4b8XaIyjvVSs2IvX4_hWYYSurD1AHf0PUrgYcd_x_bAySAR_q0IP_wbZvLA
- Dey, Supriyo, & Mittra, R. (1996). Compact microstrip patch antenna. Microwave and Optical Technology Letters, 13(1), 12–14. https://doi.org/10.1002/(sici)1098-2760(199609)13:1<12::aid-mop4>3.0.co;2-q
- Gabriel, C. (1996). Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies. Environmental Health, Report No.(June), 21. https://doi.org/Report N.AL/OE-TR- 1996-0037
- Hasan, R. R., Shanto, M. A. H., Howlader, S., & Jahan, S. (2018). A novel design and miniaturization of a scalp implantable circular patch antenna at ISM band for biomedical application. 2017 Intelligent Systems Conference, IntelliSys 2017, 2018-Janua(September), 166–169. https://doi.org/10.1109/IntelliSys.2017.8324286
- Jha, A. K., Akhter, Z., Tiwari, N., Muhammed Shafi, K. T., Samant, H., Jaleel Akhtar, M., & Cifra, M. (2018). Broadband Wireless Sensing System for Non-Invasive Testing of Biological Samples. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 8(2), 251–259. https://doi.org/10.1109/JETCAS.2018.2829205
- Ketavath, K. N., Gopi, D., & Rani, S. S. (2019). In-vitro test of miniaturized CPW-fed implantable conformal patch antenna at ISM band for biomedical applications. IEEE Access, 7, 43547–43554. https://doi.org/10.1109/ACCESS.2019.2905661
- Khan, Z., Razzaq, A., Iqbal, J., Qamar, A., & Zubair, M. (2018). Double circular ring compact antenna for ultra-wideband applications. IET Microwaves, Antennas and Propagation, 12(13), 2094–2097. https://doi.org/10.1049/iet-map.2018.5245
- Lane, J., Biondi, J., JS Pleva - US Patent 5, 400,040, & 1995, undefined. (n.d.). Microstrip patch antenna. In Google Patents. Retrieved from https://patents.google.com/patent/US5400040A/en
letters, R. W.-E., & 1995, undefined. (n.d.). Small microstrip patch antenna. Ieeexplore.Ieee.Org. Retrieved from https://ieeexplore.ieee.org/abstract/document/383981/?casa_token=GusqxrKXU4kAAAAA:DVg-E9gEz7PIX2OxuuUj3W3CEn9Xyk3tPtg-GI5xwt5C9svbJRSJV0wPNaQBo7dX_8mWzIv2kgI
- Luk, K., Mak, C., Chow, Y., letters, K. L.-E., & 1998, undefined. (n.d.). Broadband microstrip patch antenna. Ieeexplore.Ieee.Org. Retrieved from https://ieeexplore.ieee.org/abstract/document/706205/?casa_token=7knTzGotAAgAAAAA:nxRcP0CMKrv4tQNJtWm1QO8IPdMTiSQMK1gWTWw5Mm76XkegX3_8mH6bAfzAGlxFgYxyFRAiv48
- Ma, S., Sydanheimo, L., Ukkonen, L., & Bjorninen, T. (2018). Split-Ring Resonator Antenna System with Cortical Implant and Head-Worn Parts for Effective Far-Field Implant Communications. IEEE Antennas and Wireless Propagation Letters, 17(4), 710–713. https://doi.org/10.1109/LAWP.2018.2812920
- Mahmud, M. Z., Islam, M. T., Misran, N., Kibria, S., & Samsuzzaman, M. (2018). Microwave imaging for breast tumor detection using uniplanar AMC Based CPW-fed microstrip antenna. IEEE Access, 6, 44763–44775. https://doi.org/10.1109/ACCESS.2018.2859434
- Meaney, P. M., Zhou, T., Goodwin, D., Golnabi, A., Attardo, E. A., & Paulsen, K. D. (2012). Bone Dielectric Property Variation as a Function of Mineralization at Microwave Frequencies. International Journal of Biomedical Imaging, 2012. https://doi.org/10.1155/2012/649612
- Nakhleh, R. E. (2006, July 1). What is quality in surgical pathology? Journal of Clinical Pathology, Vol. 59, pp. 669–672. https://doi.org/10.1136/jcp.2005.031385
- Nalam, M., Rani, N., & Mohan, A. (2014). Biomedical Application of Microstrip Patch Antenna. International Journal of Innovative Science and Modern Engineering (IJISME), 2(6), 6–8.
- Nesasudha, M., & Fairy, J. J. (2018). Low profile antenna design for biomedical applications. Proceedings of IEEE International Conference on Signal Processing and Communication, ICSPC 2017, 2018-Janua(July), 139–142. https://doi.org/10.1109/CSPC.2017.8305825
- Ouerghi, K., Fadlallah, N., Smida, A., Ghayoula, R., Fattahi, J., & Boulejfen, N. (2017). Circular antenna array design for breast cancer detection. 2017 Sensors Networks Smart and Emerging Technologies, SENSET 2017, 2017-Janua(1), 1–4. https://doi.org/10.1109/SENSET.2017.8125016
- Paracha, K. N., Rahim, S. K. A., Soh, P. J., Kamarudin, M. R., Tan, K. G., Lo, Y. C., & Islam, M. T. (2019). A Low Profile, Dual-band, Dual Polarized Antenna for Indoor/Outdoor Wearable Application. IEEE Access, 7, 33277–33288. https://doi.org/10.1109/ACCESS.2019.2894330
- Patterson, J. (2014). Weedon’s Skin Pathology E-Book (Fourth). Retrieved from https://www.google.com/books?hl=tr&lr=&id=Y-LTBQAAQBAJ&oi=fnd&pg=PP1&dq=patterson+2014+pathology&ots=U3wha_QPa1&sig=0fYB8PC-f3bX5-UQ0robmQaUhFY
- Rahaman, M. A., & Delwar Hossain, Q. (2019). Design and overall performance analysis of an open end slot feed miniature microstrip antenna for on-body biomedical applications. 1st International Conference on Robotics, Electrical and Signal Processing Techniques, ICREST 2019, 200–204. https://doi.org/10.1109/ICREST.2019.8644334
- Raihan, R., Alam Bhuiyan, M. S., Hasan, R. R., Chowdhury, T., & Farhin, R. (2017). Awearable microstrip patch antenna for detecting brain cancer. 2017 IEEE 2nd International Conference on Signal and Image Processing, ICSIP 2017, 2017-January, 432–436. https://doi.org/10.1109/SIPROCESS.2017.8124578
- Rezaeieh, S. A., Antoniades, M. A., & Abbosh, A. M. (2018). Compact and unidirectional resonance-based reflector antenna for wideband electromagnetic imaging. IEEE Transactions on Antennas and Propagation, 66(11), 5773–5782. https://doi.org/10.1109/TAP.2018.2866516
- Rong, Z., Leeson, M. S., Higgins, M. D., & Lu, Y. (2018). Nano-rectenna powered body-centric nano-networks in the terahertz band. Healthcare Technology Letters, 5(4), 113–117. https://doi.org/10.1049/htl.2017.0034
- Rossmann, C., Rattay, F., & Haemmerich, D. (2012). Platform for patient-specific finite-element modeling and application for radiofrequency ablation. Visualization, Image Processing and Computation in Biomedicine, 1(1). https://doi.org/10.1615/visualizimageproccomputatbiomed.2012004898
- Sabban, A. (2018). Small wearable antennas for wireless communication and medical systems. IEEE Radio and Wireless Symposium, RWS, 2018-Janua, 161–164. https://doi.org/10.1109/RWS.2018.8304974
- SINAİ, BİLİMSEL VE TIBBİ ELEKTRONİK CİHAZLARIN İMALİ VE KULLANILMASI HAKKINDA YÖNETMELİK. (1985, March 22). Retrieved September 19, 2020, from Official Newspaper of Turkish Republic website: https://mevzuat.kararara.com/mvzt/mvzt3/mvzt1433.html
- Singh, I., & Tripathi, V. S. (2011). Micro strip Patch Antenna and its Applications: a Survey. In Article in International Journal of Computer Applications in Technology. Retrieved from https://www.researchgate.net/publication/232318276
- Susila, J. J., & Fathima, H. R. (2017). A Slot Loaded Rectangular Microstrip Patch Antenna for Breast Cancer Detection. International Research Journal of Engineering and Technology(IRJET), 4(4), 3394–3397. Retrieved from https://www.irjet.net/archives/V4/i4/IRJET-V4I4811.pdf
- Tofighi, M. R., & Pardeshi, J. R. (2017). Interference Enhanced Biomedical Antenna for Combined Heating and Radiometry Application. IEEE Antennas and Wireless Propagation Letters, 16, 1895–1898. https://doi.org/10.1109/LAWP.2017.2685503
- Top, R. (2017). A transmitter microstrip antenna design and application towards the detection of heart disease parameters. Selcuk University.
- Yan, S., Soh, P. J., & Vandenbosch, G. A. E. (2018). Wearable ultrawideband technology- A review of ultrawideband antennas, propagation channels, and applications in wireless body area networks. IEEE Access, 6, 42177–42185. https://doi.org/10.1109/ACCESS.2018.2861704
- Yang, Z. J., & Xiao, S. (2018). A wideband implantable antenna for 2.4 GHz ISM band biomedical application. 2018 IEEE International Workshop on Antenna Technology, IWAT2018 - Proceedings, 1–3. https://doi.org/10.1109/IWAT.2018.8379168
- Yilmaz, T., Foster, R., & Hao, Y. (2019). Radio-frequency and microwave techniques for non-invasive measurement of blood glucose levels. Diagnostics, 9(1), 1–34. https://doi.org/10.3390/diagnostics9010006
- Zamani, A., Ahdi Rezaeieh, S., Bialkowski, K. S., & Abbosh, A. M. (2018). Boundary Estimation of Imaged Object in Microwave Medical Imaging Using Antenna Resonant Frequency Shift. IEEE Transactions on Antennas and Propagation, 66(2), 927–936. https://doi.org/10.1109/TAP.2017.2780898
Evaluation and Comparison of Electromagnetic and Scattering Parameters Data of Two Microstrip Patch Antennas Operating in ISM Band for Cancer Detection
Yıl 2020,
Ejosat Özel Sayı 2020 (ICCEES), 237 - 244, 05.10.2020
Rabia Top
,
Seyfettin Sinan Gültekin
,
Dilek Uzer
Öz
Cancer diseases significantly affect lives of many people for last years. The diagnosis and treatment process is quite difficult and painful. It is especially important to reach the result of pathological tissue samples in which the structure of the cancerous tissue is determined and helps to shape the treatment in a short time. Today, it may take days or even months to obtain these results. In this study, microstrip antenna structures that are frequently used due to many advantages in biomedical applications are studied. Electromagnetic field and scattering parameter data of two antennas operating in the 2.45 GHz and 5.8 GHz operating frequency in ISM (Industrial, Scientific and Medical) band region are analyzed and compared. Pathological sample transformed form of tumor and normal skin tissue is simulated and compared in Ansys' HFSS program. Both the electric field values and the S-parameter values were compared by obtaining the values of both antennas at 2.45 GHz and 5.8 GHz from simulations. When looking at the results obtained, the difference rates in the data obtained from the antenna results radiating in the 2.45 GHz region are higher as a percentage. Thus, it is possible to say that it is more advantageous to use the 2.45 GHz frequency in antenna structures used for this purpose compared to the 5.8 GHz radiation area.
Kaynakça
- Asif, S. M., Hansen, J. W., Iftikhar, A., Ewert, D. L., & Braaten, B. D. (2019). Computation of available RF power inside the body and path loss using in vivo experiments. IET Microwaves, Antennas and Propagation, 13(1), 122–126. https://doi.org/10.1049/iet-map.2018.5582
- Bao, Z. (2019). Comparative Study of Dual-Polarized and Circularly-Polarized Antennas at 2.45 GHz for Ingestible Capsules. IEEE Transactions on Antennas and Propagation, 67(3), 1488–1500. https://doi.org/10.1109/TAP.2018.2888819
- Caspers, F. (2011). RF engineering basic concepts: S-parameters. CAS 2010 - CERN Accelerator School: RF for Accelerators, Proceedings, (June), 67–93.
- Dey, S, Letters, R. M.-M. and O. T., & 1996, undefined. (n.d.). Compact microstrip patch antenna. Wiley Online Library. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1098-2760(199609)13:1%3C12::AID-MOP4%3E3.0.CO;2-Q?casa_token=KJKDr8IHH70AAAAA:7a_CJXaWYQtXlPvOPBJt4b8XaIyjvVSs2IvX4_hWYYSurD1AHf0PUrgYcd_x_bAySAR_q0IP_wbZvLA
- Dey, Supriyo, & Mittra, R. (1996). Compact microstrip patch antenna. Microwave and Optical Technology Letters, 13(1), 12–14. https://doi.org/10.1002/(sici)1098-2760(199609)13:1<12::aid-mop4>3.0.co;2-q
- Gabriel, C. (1996). Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies. Environmental Health, Report No.(June), 21. https://doi.org/Report N.AL/OE-TR- 1996-0037
- Hasan, R. R., Shanto, M. A. H., Howlader, S., & Jahan, S. (2018). A novel design and miniaturization of a scalp implantable circular patch antenna at ISM band for biomedical application. 2017 Intelligent Systems Conference, IntelliSys 2017, 2018-Janua(September), 166–169. https://doi.org/10.1109/IntelliSys.2017.8324286
- Jha, A. K., Akhter, Z., Tiwari, N., Muhammed Shafi, K. T., Samant, H., Jaleel Akhtar, M., & Cifra, M. (2018). Broadband Wireless Sensing System for Non-Invasive Testing of Biological Samples. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 8(2), 251–259. https://doi.org/10.1109/JETCAS.2018.2829205
- Ketavath, K. N., Gopi, D., & Rani, S. S. (2019). In-vitro test of miniaturized CPW-fed implantable conformal patch antenna at ISM band for biomedical applications. IEEE Access, 7, 43547–43554. https://doi.org/10.1109/ACCESS.2019.2905661
- Khan, Z., Razzaq, A., Iqbal, J., Qamar, A., & Zubair, M. (2018). Double circular ring compact antenna for ultra-wideband applications. IET Microwaves, Antennas and Propagation, 12(13), 2094–2097. https://doi.org/10.1049/iet-map.2018.5245
- Lane, J., Biondi, J., JS Pleva - US Patent 5, 400,040, & 1995, undefined. (n.d.). Microstrip patch antenna. In Google Patents. Retrieved from https://patents.google.com/patent/US5400040A/en
letters, R. W.-E., & 1995, undefined. (n.d.). Small microstrip patch antenna. Ieeexplore.Ieee.Org. Retrieved from https://ieeexplore.ieee.org/abstract/document/383981/?casa_token=GusqxrKXU4kAAAAA:DVg-E9gEz7PIX2OxuuUj3W3CEn9Xyk3tPtg-GI5xwt5C9svbJRSJV0wPNaQBo7dX_8mWzIv2kgI
- Luk, K., Mak, C., Chow, Y., letters, K. L.-E., & 1998, undefined. (n.d.). Broadband microstrip patch antenna. Ieeexplore.Ieee.Org. Retrieved from https://ieeexplore.ieee.org/abstract/document/706205/?casa_token=7knTzGotAAgAAAAA:nxRcP0CMKrv4tQNJtWm1QO8IPdMTiSQMK1gWTWw5Mm76XkegX3_8mH6bAfzAGlxFgYxyFRAiv48
- Ma, S., Sydanheimo, L., Ukkonen, L., & Bjorninen, T. (2018). Split-Ring Resonator Antenna System with Cortical Implant and Head-Worn Parts for Effective Far-Field Implant Communications. IEEE Antennas and Wireless Propagation Letters, 17(4), 710–713. https://doi.org/10.1109/LAWP.2018.2812920
- Mahmud, M. Z., Islam, M. T., Misran, N., Kibria, S., & Samsuzzaman, M. (2018). Microwave imaging for breast tumor detection using uniplanar AMC Based CPW-fed microstrip antenna. IEEE Access, 6, 44763–44775. https://doi.org/10.1109/ACCESS.2018.2859434
- Meaney, P. M., Zhou, T., Goodwin, D., Golnabi, A., Attardo, E. A., & Paulsen, K. D. (2012). Bone Dielectric Property Variation as a Function of Mineralization at Microwave Frequencies. International Journal of Biomedical Imaging, 2012. https://doi.org/10.1155/2012/649612
- Nakhleh, R. E. (2006, July 1). What is quality in surgical pathology? Journal of Clinical Pathology, Vol. 59, pp. 669–672. https://doi.org/10.1136/jcp.2005.031385
- Nalam, M., Rani, N., & Mohan, A. (2014). Biomedical Application of Microstrip Patch Antenna. International Journal of Innovative Science and Modern Engineering (IJISME), 2(6), 6–8.
- Nesasudha, M., & Fairy, J. J. (2018). Low profile antenna design for biomedical applications. Proceedings of IEEE International Conference on Signal Processing and Communication, ICSPC 2017, 2018-Janua(July), 139–142. https://doi.org/10.1109/CSPC.2017.8305825
- Ouerghi, K., Fadlallah, N., Smida, A., Ghayoula, R., Fattahi, J., & Boulejfen, N. (2017). Circular antenna array design for breast cancer detection. 2017 Sensors Networks Smart and Emerging Technologies, SENSET 2017, 2017-Janua(1), 1–4. https://doi.org/10.1109/SENSET.2017.8125016
- Paracha, K. N., Rahim, S. K. A., Soh, P. J., Kamarudin, M. R., Tan, K. G., Lo, Y. C., & Islam, M. T. (2019). A Low Profile, Dual-band, Dual Polarized Antenna for Indoor/Outdoor Wearable Application. IEEE Access, 7, 33277–33288. https://doi.org/10.1109/ACCESS.2019.2894330
- Patterson, J. (2014). Weedon’s Skin Pathology E-Book (Fourth). Retrieved from https://www.google.com/books?hl=tr&lr=&id=Y-LTBQAAQBAJ&oi=fnd&pg=PP1&dq=patterson+2014+pathology&ots=U3wha_QPa1&sig=0fYB8PC-f3bX5-UQ0robmQaUhFY
- Rahaman, M. A., & Delwar Hossain, Q. (2019). Design and overall performance analysis of an open end slot feed miniature microstrip antenna for on-body biomedical applications. 1st International Conference on Robotics, Electrical and Signal Processing Techniques, ICREST 2019, 200–204. https://doi.org/10.1109/ICREST.2019.8644334
- Raihan, R., Alam Bhuiyan, M. S., Hasan, R. R., Chowdhury, T., & Farhin, R. (2017). Awearable microstrip patch antenna for detecting brain cancer. 2017 IEEE 2nd International Conference on Signal and Image Processing, ICSIP 2017, 2017-January, 432–436. https://doi.org/10.1109/SIPROCESS.2017.8124578
- Rezaeieh, S. A., Antoniades, M. A., & Abbosh, A. M. (2018). Compact and unidirectional resonance-based reflector antenna for wideband electromagnetic imaging. IEEE Transactions on Antennas and Propagation, 66(11), 5773–5782. https://doi.org/10.1109/TAP.2018.2866516
- Rong, Z., Leeson, M. S., Higgins, M. D., & Lu, Y. (2018). Nano-rectenna powered body-centric nano-networks in the terahertz band. Healthcare Technology Letters, 5(4), 113–117. https://doi.org/10.1049/htl.2017.0034
- Rossmann, C., Rattay, F., & Haemmerich, D. (2012). Platform for patient-specific finite-element modeling and application for radiofrequency ablation. Visualization, Image Processing and Computation in Biomedicine, 1(1). https://doi.org/10.1615/visualizimageproccomputatbiomed.2012004898
- Sabban, A. (2018). Small wearable antennas for wireless communication and medical systems. IEEE Radio and Wireless Symposium, RWS, 2018-Janua, 161–164. https://doi.org/10.1109/RWS.2018.8304974
- SINAİ, BİLİMSEL VE TIBBİ ELEKTRONİK CİHAZLARIN İMALİ VE KULLANILMASI HAKKINDA YÖNETMELİK. (1985, March 22). Retrieved September 19, 2020, from Official Newspaper of Turkish Republic website: https://mevzuat.kararara.com/mvzt/mvzt3/mvzt1433.html
- Singh, I., & Tripathi, V. S. (2011). Micro strip Patch Antenna and its Applications: a Survey. In Article in International Journal of Computer Applications in Technology. Retrieved from https://www.researchgate.net/publication/232318276
- Susila, J. J., & Fathima, H. R. (2017). A Slot Loaded Rectangular Microstrip Patch Antenna for Breast Cancer Detection. International Research Journal of Engineering and Technology(IRJET), 4(4), 3394–3397. Retrieved from https://www.irjet.net/archives/V4/i4/IRJET-V4I4811.pdf
- Tofighi, M. R., & Pardeshi, J. R. (2017). Interference Enhanced Biomedical Antenna for Combined Heating and Radiometry Application. IEEE Antennas and Wireless Propagation Letters, 16, 1895–1898. https://doi.org/10.1109/LAWP.2017.2685503
- Top, R. (2017). A transmitter microstrip antenna design and application towards the detection of heart disease parameters. Selcuk University.
- Yan, S., Soh, P. J., & Vandenbosch, G. A. E. (2018). Wearable ultrawideband technology- A review of ultrawideband antennas, propagation channels, and applications in wireless body area networks. IEEE Access, 6, 42177–42185. https://doi.org/10.1109/ACCESS.2018.2861704
- Yang, Z. J., & Xiao, S. (2018). A wideband implantable antenna for 2.4 GHz ISM band biomedical application. 2018 IEEE International Workshop on Antenna Technology, IWAT2018 - Proceedings, 1–3. https://doi.org/10.1109/IWAT.2018.8379168
- Yilmaz, T., Foster, R., & Hao, Y. (2019). Radio-frequency and microwave techniques for non-invasive measurement of blood glucose levels. Diagnostics, 9(1), 1–34. https://doi.org/10.3390/diagnostics9010006
- Zamani, A., Ahdi Rezaeieh, S., Bialkowski, K. S., & Abbosh, A. M. (2018). Boundary Estimation of Imaged Object in Microwave Medical Imaging Using Antenna Resonant Frequency Shift. IEEE Transactions on Antennas and Propagation, 66(2), 927–936. https://doi.org/10.1109/TAP.2017.2780898