Gerilim Sensörü Uygulamaları İçin Çok Duvarlı Karbon Nanotip Dolgulu Elastomer Nanokompozitlerin Piezodirenç Özelliklerinin Araştırılması
Yıl 2021,
Sayı: 25, 370 - 379, 31.08.2021
Hasan Kasım
Öz
Elastomer matris ve çok duvarlı karbon nanotüp (MW-CNT) dolgu malzemeleri ile hazırlanan nanokompozitlerin piezodirenç değişimine göre gerilme sensörü olarak kullanılma olasılığı araştırılmıştır. Farklı konsantrasyonlar da MW-CNT ile doldurulmuş elastomer esaslı nanokompozitlerin deformasyon davranışlarını belirlemek için piezodirenç mekanizmasının sistematik bir çalışması gerçekleştirildi. Hazırlanan numunelerin serbest halde iletkenlikleri ölçülmüş ve süzülme eşiğini işaret eden kritik dolgu miktar aralığı tespit edilmiştir. Nanokompozit numunelerine uygulanan gerilmeye bağlı uzamaların neden olduğu direnç değişiklikleri, sırasıyla doğrusal ve doğrusal olmayan iki farklı bölgede piezo davranış göstermiştir. Direnç değişikliğinden, uygulanan gerilmeye bağlı uzamanın bir fonksiyonu olarak hesaplanan ölçüm faktörü, doğrusal bölge için yaklaşık 90 ve doğrusal olmayan bölge için 270 olarak ölçülmüştür. Ağırlıkça %2,92 oranında MW-CNT dolgulu nanokompozitler, %90 ve %150 uzamalar ile yapılan tekrarlı yükleme testlerinde tekrarlana bilirlik ve mükemmel geriye dönüş performansı göstermiştir. Bu çalışma, elastomer malzemelere uygun oranlarda MW-CNT’ler ekleyerek piezodirenç özellikler kazandırdıklarını ve yüksek uzama gerektiren dinamik çalışma ortamlarında hassas gerilim sensörleri olarak kullanılabileceğini göstermiştir.
Destekleyen Kurum
Pega Otomotiv San. Ve Tic. A.Ş
Teşekkür
Yapılan çalışmalarda laboratuvar olanaklarından yararlanmamızı sağlayan Pega Otomotiv A.Ş. firmasına teşekkür ederim.
Kaynakça
- Shivashankar P., and Gopalakrishnan S. (2020). Review on the use of piezoelectric materials for active vibration, noise, and flow control. In: Smart Materials and Structures, 29 (5). https://dx.doi.org/10.1088/1361-665X/ab7541
- Kang I., Schulz M.J., Kim J.H., Shanov V., Shi D. (2006). A carbon nanotube strain sensor for structural health monitoring, Smart Materials and Structures, 15 (3), 737. DOI:10.1088/0964-1726/15/3/009
- Xu, T., Qiu, Q., Lu, S., Ma, K., & Wang, X. (2019). Multi-direction health monitoring with carbon nanotube film strain sensor. International Journal of Distributed Sensor Networks. https://doi.org/10.1177/1550147719829683
- Qureshi, E.M., Shen, X., & Chang, L. (2015). A Low Frequency Vibration Control by Synchronized Switching on Negative Capacitance and Voltage Sources. International Journal of Control and Automation, 8, 121-138. DOI:10.14257/IJCA.2015.8.6.13
- Shihong Xu. & Fan, Zeng & Li, Chengwei & Wang, Peng & Sammed, Khan & Pan, Lujun. (2019). Investigation of strain sensing mechanisms on the ultra-thin carbon nanotube networks with different densities. Carbon. 155. https://doi.org/10.1016/j.carbon.2019.09.004
- Kanoun, O., Bouhamed, A., Ramalingame, R., Bautista-Quijano, J. R., Rajendran, D., & Al-Hamry, A. (2021). Review on Conductive Polymer/CNTs Nanocomposites Based Flexible and Stretchable Strain and Pressure Sensors. Sensors (Basel , Switzerland), 21(2),341. https://doi.org/10.3390/s21020341
- Shimada, K., & Saga, N. (2017). Development of a Hybrid Piezo Natural Rubber Piezoelectricity and Piezoresistivity Sensor with Magnetic Clusters Made by Electric and Magnetic Field Assistance and Filling with Magnetic Compound Fluid. Sensors (Basel, Switzerland), 17(2), 346. https://doi.org/10.3390/s17020346
- Wang, X., Wang, S. & Chung, D.D.L. (1999). Sensing damage in carbon fiber and its polymer-matrix and carbon-matrix composites by electrical resistance measurement. Journal of Materials Science 34, 2703–2713. https://doi.org/10.1023/A:1004629505992
- Kim, K. & Tia, Mang & Greene, J.. (2017). Performance Characteristics of Fiber-Optic Strain Sensors as Compared With Electrical Resistance and Vibrating Wire Strain Gauges. Journal of Testing and Evaluation. 45. 20160281. 10.1520/JTE20160281.
- Avilés, F., May-Pat, A., Canché-Escamilla, G., Rodríguez-Uicab, O., Ku-Herrera, J. J., Duarte-Aranda, S., Uribe-Calderon, J., Gonzalez-Chi, P. I., Arronche, L., & La Saponara, V. (2016). Influence of carbon nanotube on the piezoresistive behavior of multiwall carbon nanotube/polymer composites. Journal of Intelligent Material Systems and Structures, 27(1), 92–103. https://doi.org/10.1177/1045389X14560367
- Chen W., Li F., Ooi P.C., Ye Y., Kim T.W., Guo T. (2016). Room temperature pH-dependent ammonia gas sensors using graphene quantum dots. Sensors Actuators B: Chemical, 222, 763–768. https://doi.org/10.1016/j.snb.2015.09.002
- Alamusi, Hu, N., Fukunaga, H., Atobe, S., Liu, Y., & Li, J. (2011). Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors (Basel , Switzerland), 11(11), 10691–10723. https://doi.org/10.3390/s111110691
- Oliva-Avilés A., Avilés F., Sosa V. (2011). Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by anelectric field, Carbon, 49 (9), 2989–2997. https://doi.org/10.1016/j.carbon.2011.03.017
- Wichmann M.H.G., Buschhorn S.T., Gehrmann, J., Schulte, K.(2009). Piezoresistive response of epoxy composites with carbon nanoparticles under tensile load. Physical Review B, 80(24), 245437. https://doi.org/10.1103/PhysRevB.80.245437
- Kim Y.J., Cha J.Y., Ham H., Huh H., So D.S., Kang I. (2011). Preparation of piezoresistive nano smart hybrid material based on graphene, Current Applied Physics, 11(1), 350-S352. https://doi.org/10.1016/j.cap.2010.11.022
- Meeuw H., Viets C., Liebig W., Schulte K., Fiedler B. (2016). Morphological influence of carbon nanofillers on the piezoresistive response of carbon nanoparticle/epoxy composites under mechanical load. European Polymer Journal, 85, 198-210. https://doi.org/10.1016/j.eurpolymj.2016.10.027
- Yazıcı, M , Kapucu, O , Kasım, H , Can, Y . (2017). Experimental Investigation on Fatigue Life of Cord-Rubber Composites . Avrupa Bilim ve Teknoloji Dergisi , 2017 Ejosat Aralık Özel Sayı , 16-21 . Retrieved from https://dergipark.org.tr/tr/pub/ejosat/issue/33997/369001
- Santos A., Amorim L., Nunes J., Rocha L., Silva A.F., Viana, J.(2019). Aligned carbon nanotube based sensors for strain sensing applications. Sensors and Actuators A-physical, 289, 157-164. https://doi.org/10.1016/j.sna.2019.02.026
- Spinelli G., Lamberti P., Tucci V., Vertuccio L., Guadagno L. (2018). Experimental and theoretical study on piezoresistive properties of a structural resin reinforced with carbon nanotubes for strain sensing and damage monitoring. Composites Part B-engineering, 145, 90-99. https://doi.org/10.1016/j.compositesb.2018.03.025
- Yin, G., Hu, N., Karube, Y., Liu, Y., Li, Y., & Fukunaga, H. (2011). A carbon nanotube/polymer strain sensor with linear and anti-symmetric piezoresistivity. Journal of Composite Materials, 45(12), 1315–1323. https://doi.org/10.1177/0021998310393296
- Bokobza, L. (2012). Multiwall carbon nanotube-filled natural rubber: electrical and Mechanical Properties. Express Polymer Letters. 6. 213-223. 10.3144/expresspolymlett.2012.24. DOI:10.3144/expresspolymlett.2012.24
- Qingliang He., Yuan T., Zhang X., Guo S., Liu J., Liu J.,Liu X., Sun L., Wei S., Guo Z. (2014). Heavy duty piezoresistivity induced strain sensing natural rubber/carbon black nanocomposites reinforced with different carbon nanofillers, Materials Research Express, 1(3), 035029. DOI:10.1088/2053-1591/1/3/035029
- Chen L., Chen G., Lu L. (2007). Piezoresistive behavior study on finger sensing silicone rubber/graphite nanosheet nanocomposites, Advanced Functional Materials, 17(6), 898–904. https://doi.org/10.1002/adfm.200600519
- Wang P., Geng S., Ding T. (2010). Effects of carboxyl radical on electrical resistance ofmulti-walled carbon nanotube filled silicone rubber composite underpressure. Composite Science and Technology, 70(10), 1571–1573. https://doi.org/10.1016/j.compscitech.2010.05.008
- Gao L., Chou T.W., Thostenson E.T., Zhang Z., Coulaud M. (2011). In situ sensing ofimpact damage in epoxy/glass fiber composites using percolating carbonnanotube networks. Carbon, 49(10), 3382–3385, 2011. https://doi.org/10.1016/j.carbon.2011.04.003
- Zhang, Xiang-Wu & Pan, yi & Yi, Xiaosu. (2000). Time dependence of piezoresistance for the conductor-filled polymer composites. Journal of Polymer Science Part B: Polymer Physics. 38. 2739 - 2749. 10.1002/1099-0488(20001101)38:21<2739::AID-POLB40>3.0.CO;2-O.
- Wang L., Ding T. H., Wang P. (2009). Influence of carbon black concentration on piezoresistivity for carbon-black-filled silicone rubber composite. Carbon, 47(14), 3151–3157. https://doi.org/10.1016/j.carbon.2009.06.050
- Knite M., Teteris V., Kiploka A., Kaupuzs J. (2004). Polyisoprene–carbon black nanocomposites as tensile strain and pressure sensor materials. Sensors and Actuators A: Physical, 110(1–3), 142–149. https://doi.org/10.1016/j.sna.2003.08.006
- Chervanyov A.I.,Selvan N.T., Eshwaran S.B., Das A., Stöckelhuber K.W., Wießner S., Pötschke P.,. Nando G.B, Heinrich G. (2016). Piezoresistive natural rubber-multiwall carbon nanotube nanocomposite for sensor applications. Sensors and Actuators A: Physical, 239, 102-113. https://doi.org/10.1016/j.sna.2016.01.004
- Peng Z., Feng C., Luo Y., Li Y., Kong L. (2010). Self-assembled natural rubber/multi-walled carbon nanotube composites using latex compounding techniques. Carbon, 48, 4497-4503. https://doi.org/10.1016/j.carbon.2010.08.025
- Simmons J.G. (1963). Electric tunnel effect between dissimilar electrodes separated by a thin insulating film, J Applied Physics, 34(9), 2581. https://doi.org/10.1063/1.1729774
- Rahman R., Servati P. (2012). Effects of inter-tube distance and alignment on tunnelling resistance and strain sensitivity of nanotube/polymer composite films. Nanotechnology, 23(5), 055703. DOI: 10.1088/0957-4484/23/5/055703
- Bauhofer, W.; Kovacs, J.Z. (2009). A review and analysis of electrical percolation in carbon nanotube polymer composites. Composite Science and Technology, 69(10), 1486-1498. https://doi.org/10.1016/j.compscitech.2008.06.018
- Perets Y.S., Lazarenko O., Sivoloshsky O.A., Vovchenko L., Matzui L. (2020). Percolation characteristics of multi-polymer composites with different ratios of nanocarbon fillers. Molecular Crystals and Liquid Crystals, 699, 110 – 97. https://doi.org/10.1080/15421406.2020.1732544
- Chen J., Yan L. (2018). Effect of Carbon Nanotube Aspect Ratio on the Thermal and Electrical Properties of Epoxy Nanocomposites. Fullerenes, Nanotubes and Carbon Nanostructures, 26, 697–704. https://doi.org/10.1080/1536383X.2018.1476345
- Chanklin W., Laowongkotr J., Chibante L.P. (2018). Electrical property validation of percolation modeling in different polymer structures of carbon-based nanocomposites. Materials today Communications, 17, 153-160. https://doi.org/10.1016/j.mtcomm.2018.09.004
- Hu N., Masuda Z., Yan C., Yamamoto G., Fukunaga H., Hashida T. (2008). The electrical properties of polymer nanocomposites with carbon nanotube fillers. Nanotechnology, 19(21), 215701. DOI:10.1088/0957-4484/19/21/215701
- Sánchez-Romate X.F., Jiménez-Suárez A., Sánchez M., Güemes A., Ureña A. (2016). Novel approach to percolation threshold on electrical conductivity of carbon nanotube reinforced nanocomposites. RSC Advances, 6, 43418-43428. https://doi.org/10.1039/C6RA03619H
- Yang W., Ke K., Yue L., Shao H., Yang M., Manas-Zloczower I.(2021). Boosting Electrical and Piezoresistive Properties of Polymer Nanocomposites via Hybrid Carbon Fillers: A Review. Carbon, 173, 1020-104. https://doi.org/10.1016/j.carbon.2020.11.070
- Yazdani-Pedram M., Aguilar-Bolados H., Contreras-Cid A., López-Manchado M.A., May-Pat A., Avilés F.(2017). Influence of the morphology of carbon nanostructures on the piezoresistivity of hybrid natural rubber nanocomposites. Composites Part B-engineering, 109, 147-154. https://doi.org/10.1016/j.compositesb.2016.10.057
- Balberg I. (1987). Tunneling and nonuniversal conductivity in composite materials. Phys. Rev. Lett. 59(12), 1305–1308. DOI: 10.1103/PhysRevLett.59.1305
- Meguid S., Alian A. (2019). Multiscale modeling of the coupled electromechanical behavior of multifunctional nanocomposites. Composite Structures, 208, 826-835. https://doi.org/10.1016/j.compstruct.2018.10.066
- Das, A., Natarajan T.S., Eshwaran S., Stöckelhuber K.W., Wießner S., Pötschke P., Heinrich G. (2017). Strong Strain Sensing Performance of Natural Rubber Nanocomposites. ACS applied materials & interfaces, 9 5, 4860-4872. https://doi.org/10.1021/acsami.6b13074
- Xu W., Allen M. (2013). Deformable Strain Sensors Based on Patterned MWCNTs/ Polydimethylsiloxane Composites. Journal of Polymer Science Part B, 51, 1505-1512. https://doi.org/10.1002/polb.23361
- Kasım H., Demir, B. (2021). Investigation of electrical properties of hybrid nanocomposites containing different fillers on pressure sensor applications under different loading. Journal of Composite Materials, 0(0), 1-9, 2021.
https://doi.org/10.1177/0021998321990714
- Kalantari M., Dargahi J., Kövecses J., Mardasi M.G., Nouri, S. (2012). A New Approach for Modeling Piezoresistive Force Sensors Based on Semiconductive Polymer Composites. IEEE/ASME Transactions on Mechatronics, 17, 572-581. DOI: 10.1109/TMECH.2011.2108664
Investigation of Piezoresistive Properties of Multi-walled Carbon Nanotube Filled Elastomer Nanocomposites for Strain Sensor Application
Yıl 2021,
Sayı: 25, 370 - 379, 31.08.2021
Hasan Kasım
Öz
The possibility of using nanocomposites prepared with elastomer matrix and multi-walled carbon nanotube (MW-CNT) filler materials as a strain sensor according to the change of piezoresistance was investigated. A systematic study of the piezoresistive mechanism was realized to determine the deformation behavior of elastomer nanocomposites filled with MW-CNT at different concentrations. By measuring the prepared samples' free-state electrical conductivity, the critical filler material amount range indicating the percolation threshold was determined. The resistance changes caused by strains due to the stress applied to nanocomposite specimens showed piezo behavior in two different regions, linear and nonlinear, respectively. The gauge factor found using the change of resistance as a function of the strain was measured as approximately 90 for the linear region and 270 for the non-linear region. MW-CNT filled nanocomposites with a ratio of 2.92% by weight showed reproducibility and excellent recovery performance in cyclic loading tests with 90% and 150% strains. This study showed that by adding MW-CNTs to elastomer materials in optimum proportions, they gain piezoresistive properties and could be used as sensitive strain sensors in dynamic working environments that require high elongation.
Kaynakça
- Shivashankar P., and Gopalakrishnan S. (2020). Review on the use of piezoelectric materials for active vibration, noise, and flow control. In: Smart Materials and Structures, 29 (5). https://dx.doi.org/10.1088/1361-665X/ab7541
- Kang I., Schulz M.J., Kim J.H., Shanov V., Shi D. (2006). A carbon nanotube strain sensor for structural health monitoring, Smart Materials and Structures, 15 (3), 737. DOI:10.1088/0964-1726/15/3/009
- Xu, T., Qiu, Q., Lu, S., Ma, K., & Wang, X. (2019). Multi-direction health monitoring with carbon nanotube film strain sensor. International Journal of Distributed Sensor Networks. https://doi.org/10.1177/1550147719829683
- Qureshi, E.M., Shen, X., & Chang, L. (2015). A Low Frequency Vibration Control by Synchronized Switching on Negative Capacitance and Voltage Sources. International Journal of Control and Automation, 8, 121-138. DOI:10.14257/IJCA.2015.8.6.13
- Shihong Xu. & Fan, Zeng & Li, Chengwei & Wang, Peng & Sammed, Khan & Pan, Lujun. (2019). Investigation of strain sensing mechanisms on the ultra-thin carbon nanotube networks with different densities. Carbon. 155. https://doi.org/10.1016/j.carbon.2019.09.004
- Kanoun, O., Bouhamed, A., Ramalingame, R., Bautista-Quijano, J. R., Rajendran, D., & Al-Hamry, A. (2021). Review on Conductive Polymer/CNTs Nanocomposites Based Flexible and Stretchable Strain and Pressure Sensors. Sensors (Basel , Switzerland), 21(2),341. https://doi.org/10.3390/s21020341
- Shimada, K., & Saga, N. (2017). Development of a Hybrid Piezo Natural Rubber Piezoelectricity and Piezoresistivity Sensor with Magnetic Clusters Made by Electric and Magnetic Field Assistance and Filling with Magnetic Compound Fluid. Sensors (Basel, Switzerland), 17(2), 346. https://doi.org/10.3390/s17020346
- Wang, X., Wang, S. & Chung, D.D.L. (1999). Sensing damage in carbon fiber and its polymer-matrix and carbon-matrix composites by electrical resistance measurement. Journal of Materials Science 34, 2703–2713. https://doi.org/10.1023/A:1004629505992
- Kim, K. & Tia, Mang & Greene, J.. (2017). Performance Characteristics of Fiber-Optic Strain Sensors as Compared With Electrical Resistance and Vibrating Wire Strain Gauges. Journal of Testing and Evaluation. 45. 20160281. 10.1520/JTE20160281.
- Avilés, F., May-Pat, A., Canché-Escamilla, G., Rodríguez-Uicab, O., Ku-Herrera, J. J., Duarte-Aranda, S., Uribe-Calderon, J., Gonzalez-Chi, P. I., Arronche, L., & La Saponara, V. (2016). Influence of carbon nanotube on the piezoresistive behavior of multiwall carbon nanotube/polymer composites. Journal of Intelligent Material Systems and Structures, 27(1), 92–103. https://doi.org/10.1177/1045389X14560367
- Chen W., Li F., Ooi P.C., Ye Y., Kim T.W., Guo T. (2016). Room temperature pH-dependent ammonia gas sensors using graphene quantum dots. Sensors Actuators B: Chemical, 222, 763–768. https://doi.org/10.1016/j.snb.2015.09.002
- Alamusi, Hu, N., Fukunaga, H., Atobe, S., Liu, Y., & Li, J. (2011). Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors (Basel , Switzerland), 11(11), 10691–10723. https://doi.org/10.3390/s111110691
- Oliva-Avilés A., Avilés F., Sosa V. (2011). Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by anelectric field, Carbon, 49 (9), 2989–2997. https://doi.org/10.1016/j.carbon.2011.03.017
- Wichmann M.H.G., Buschhorn S.T., Gehrmann, J., Schulte, K.(2009). Piezoresistive response of epoxy composites with carbon nanoparticles under tensile load. Physical Review B, 80(24), 245437. https://doi.org/10.1103/PhysRevB.80.245437
- Kim Y.J., Cha J.Y., Ham H., Huh H., So D.S., Kang I. (2011). Preparation of piezoresistive nano smart hybrid material based on graphene, Current Applied Physics, 11(1), 350-S352. https://doi.org/10.1016/j.cap.2010.11.022
- Meeuw H., Viets C., Liebig W., Schulte K., Fiedler B. (2016). Morphological influence of carbon nanofillers on the piezoresistive response of carbon nanoparticle/epoxy composites under mechanical load. European Polymer Journal, 85, 198-210. https://doi.org/10.1016/j.eurpolymj.2016.10.027
- Yazıcı, M , Kapucu, O , Kasım, H , Can, Y . (2017). Experimental Investigation on Fatigue Life of Cord-Rubber Composites . Avrupa Bilim ve Teknoloji Dergisi , 2017 Ejosat Aralık Özel Sayı , 16-21 . Retrieved from https://dergipark.org.tr/tr/pub/ejosat/issue/33997/369001
- Santos A., Amorim L., Nunes J., Rocha L., Silva A.F., Viana, J.(2019). Aligned carbon nanotube based sensors for strain sensing applications. Sensors and Actuators A-physical, 289, 157-164. https://doi.org/10.1016/j.sna.2019.02.026
- Spinelli G., Lamberti P., Tucci V., Vertuccio L., Guadagno L. (2018). Experimental and theoretical study on piezoresistive properties of a structural resin reinforced with carbon nanotubes for strain sensing and damage monitoring. Composites Part B-engineering, 145, 90-99. https://doi.org/10.1016/j.compositesb.2018.03.025
- Yin, G., Hu, N., Karube, Y., Liu, Y., Li, Y., & Fukunaga, H. (2011). A carbon nanotube/polymer strain sensor with linear and anti-symmetric piezoresistivity. Journal of Composite Materials, 45(12), 1315–1323. https://doi.org/10.1177/0021998310393296
- Bokobza, L. (2012). Multiwall carbon nanotube-filled natural rubber: electrical and Mechanical Properties. Express Polymer Letters. 6. 213-223. 10.3144/expresspolymlett.2012.24. DOI:10.3144/expresspolymlett.2012.24
- Qingliang He., Yuan T., Zhang X., Guo S., Liu J., Liu J.,Liu X., Sun L., Wei S., Guo Z. (2014). Heavy duty piezoresistivity induced strain sensing natural rubber/carbon black nanocomposites reinforced with different carbon nanofillers, Materials Research Express, 1(3), 035029. DOI:10.1088/2053-1591/1/3/035029
- Chen L., Chen G., Lu L. (2007). Piezoresistive behavior study on finger sensing silicone rubber/graphite nanosheet nanocomposites, Advanced Functional Materials, 17(6), 898–904. https://doi.org/10.1002/adfm.200600519
- Wang P., Geng S., Ding T. (2010). Effects of carboxyl radical on electrical resistance ofmulti-walled carbon nanotube filled silicone rubber composite underpressure. Composite Science and Technology, 70(10), 1571–1573. https://doi.org/10.1016/j.compscitech.2010.05.008
- Gao L., Chou T.W., Thostenson E.T., Zhang Z., Coulaud M. (2011). In situ sensing ofimpact damage in epoxy/glass fiber composites using percolating carbonnanotube networks. Carbon, 49(10), 3382–3385, 2011. https://doi.org/10.1016/j.carbon.2011.04.003
- Zhang, Xiang-Wu & Pan, yi & Yi, Xiaosu. (2000). Time dependence of piezoresistance for the conductor-filled polymer composites. Journal of Polymer Science Part B: Polymer Physics. 38. 2739 - 2749. 10.1002/1099-0488(20001101)38:21<2739::AID-POLB40>3.0.CO;2-O.
- Wang L., Ding T. H., Wang P. (2009). Influence of carbon black concentration on piezoresistivity for carbon-black-filled silicone rubber composite. Carbon, 47(14), 3151–3157. https://doi.org/10.1016/j.carbon.2009.06.050
- Knite M., Teteris V., Kiploka A., Kaupuzs J. (2004). Polyisoprene–carbon black nanocomposites as tensile strain and pressure sensor materials. Sensors and Actuators A: Physical, 110(1–3), 142–149. https://doi.org/10.1016/j.sna.2003.08.006
- Chervanyov A.I.,Selvan N.T., Eshwaran S.B., Das A., Stöckelhuber K.W., Wießner S., Pötschke P.,. Nando G.B, Heinrich G. (2016). Piezoresistive natural rubber-multiwall carbon nanotube nanocomposite for sensor applications. Sensors and Actuators A: Physical, 239, 102-113. https://doi.org/10.1016/j.sna.2016.01.004
- Peng Z., Feng C., Luo Y., Li Y., Kong L. (2010). Self-assembled natural rubber/multi-walled carbon nanotube composites using latex compounding techniques. Carbon, 48, 4497-4503. https://doi.org/10.1016/j.carbon.2010.08.025
- Simmons J.G. (1963). Electric tunnel effect between dissimilar electrodes separated by a thin insulating film, J Applied Physics, 34(9), 2581. https://doi.org/10.1063/1.1729774
- Rahman R., Servati P. (2012). Effects of inter-tube distance and alignment on tunnelling resistance and strain sensitivity of nanotube/polymer composite films. Nanotechnology, 23(5), 055703. DOI: 10.1088/0957-4484/23/5/055703
- Bauhofer, W.; Kovacs, J.Z. (2009). A review and analysis of electrical percolation in carbon nanotube polymer composites. Composite Science and Technology, 69(10), 1486-1498. https://doi.org/10.1016/j.compscitech.2008.06.018
- Perets Y.S., Lazarenko O., Sivoloshsky O.A., Vovchenko L., Matzui L. (2020). Percolation characteristics of multi-polymer composites with different ratios of nanocarbon fillers. Molecular Crystals and Liquid Crystals, 699, 110 – 97. https://doi.org/10.1080/15421406.2020.1732544
- Chen J., Yan L. (2018). Effect of Carbon Nanotube Aspect Ratio on the Thermal and Electrical Properties of Epoxy Nanocomposites. Fullerenes, Nanotubes and Carbon Nanostructures, 26, 697–704. https://doi.org/10.1080/1536383X.2018.1476345
- Chanklin W., Laowongkotr J., Chibante L.P. (2018). Electrical property validation of percolation modeling in different polymer structures of carbon-based nanocomposites. Materials today Communications, 17, 153-160. https://doi.org/10.1016/j.mtcomm.2018.09.004
- Hu N., Masuda Z., Yan C., Yamamoto G., Fukunaga H., Hashida T. (2008). The electrical properties of polymer nanocomposites with carbon nanotube fillers. Nanotechnology, 19(21), 215701. DOI:10.1088/0957-4484/19/21/215701
- Sánchez-Romate X.F., Jiménez-Suárez A., Sánchez M., Güemes A., Ureña A. (2016). Novel approach to percolation threshold on electrical conductivity of carbon nanotube reinforced nanocomposites. RSC Advances, 6, 43418-43428. https://doi.org/10.1039/C6RA03619H
- Yang W., Ke K., Yue L., Shao H., Yang M., Manas-Zloczower I.(2021). Boosting Electrical and Piezoresistive Properties of Polymer Nanocomposites via Hybrid Carbon Fillers: A Review. Carbon, 173, 1020-104. https://doi.org/10.1016/j.carbon.2020.11.070
- Yazdani-Pedram M., Aguilar-Bolados H., Contreras-Cid A., López-Manchado M.A., May-Pat A., Avilés F.(2017). Influence of the morphology of carbon nanostructures on the piezoresistivity of hybrid natural rubber nanocomposites. Composites Part B-engineering, 109, 147-154. https://doi.org/10.1016/j.compositesb.2016.10.057
- Balberg I. (1987). Tunneling and nonuniversal conductivity in composite materials. Phys. Rev. Lett. 59(12), 1305–1308. DOI: 10.1103/PhysRevLett.59.1305
- Meguid S., Alian A. (2019). Multiscale modeling of the coupled electromechanical behavior of multifunctional nanocomposites. Composite Structures, 208, 826-835. https://doi.org/10.1016/j.compstruct.2018.10.066
- Das, A., Natarajan T.S., Eshwaran S., Stöckelhuber K.W., Wießner S., Pötschke P., Heinrich G. (2017). Strong Strain Sensing Performance of Natural Rubber Nanocomposites. ACS applied materials & interfaces, 9 5, 4860-4872. https://doi.org/10.1021/acsami.6b13074
- Xu W., Allen M. (2013). Deformable Strain Sensors Based on Patterned MWCNTs/ Polydimethylsiloxane Composites. Journal of Polymer Science Part B, 51, 1505-1512. https://doi.org/10.1002/polb.23361
- Kasım H., Demir, B. (2021). Investigation of electrical properties of hybrid nanocomposites containing different fillers on pressure sensor applications under different loading. Journal of Composite Materials, 0(0), 1-9, 2021.
https://doi.org/10.1177/0021998321990714
- Kalantari M., Dargahi J., Kövecses J., Mardasi M.G., Nouri, S. (2012). A New Approach for Modeling Piezoresistive Force Sensors Based on Semiconductive Polymer Composites. IEEE/ASME Transactions on Mechatronics, 17, 572-581. DOI: 10.1109/TMECH.2011.2108664