Araştırma Makalesi
BibTex RIS Kaynak Göster

Kare Kutu İçinde Fe3O4/Su’yun Doğal Konveksiyona Etkisi

Yıl 2021, Sayı: 28, 675 - 683, 30.11.2021
https://doi.org/10.31590/ejosat.1010066

Öz

Doğal konveksiyon altında (103≤Gr≤105) 2D kutu içindeki (10 mm x 10 mm) Fe3O4/water karakteristiği detaylı olarak incelenmiştir. Modelimiz bir kutu içinde doğal konveksiyonun nano akışkanın varlığı durumunda analiz etmek için geliştirilmiştir. Sol duvar sıcak duvar, sağ duvar soğuk sıcaklıkta sabit tutulurken, yatay duvarlar yalıtımlı olarak tutulmuştur. Fe3O4/water (0≤φ≤1.0) nanoakışkanı kutu içindeki konvektif iyileştirmeyi analiz etmek için kullanılmıştır. Fe3O4/water nanoakışkanının akış karakteristiğimi ve ısı transferi performansı analiz etmek için sıcaklık eş eğrisi, hız akış çizgisi ve girdap akış çizgisi oluşturulmuştur. Sonuç olarak, baz akışkan içine nanoakışkan karıştırılması doğal konveksiyonu iyileştirmektedir. Ayrıca Grashof sayısı ısı transferi mekanizmasında önemli bir role sahiptir.

Kaynakça

  • Savio, R. R., Shaik, S., & Kumar, R. S. (2021). Numerical study of natural convection around a square cylinder within a square enclosure for different orientations. Journal of Thermal Analysis and Calorimetry, 1-15.
  • Singh, A. P., Kumar, A., & Singh, O. P. (2021). Natural convection solar air heater: Bell-mouth integrated converging channel for high flow applications. Building and Environment, 187, 107367.
  • Pera, L., & Gebhart, B. (1973). Natural convection boundary layer flow over horizontal and slightly inclined surfaces. International Journal of Heat and Mass Transfer, 16(6), 1131-1146.
  • Jones, H., & Marshall, J. (1993). Convection with rotation in a neutral ocean: A study of open-ocean deep convection. Journal of Physical Oceanography, 23(6), 1009-1039.
  • Kim, B. S., Lee, D. S., Ha, M. Y., & Yoon, H. S. (2008). A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations. International journal of heat and mass transfer, 51(7-8), 1888-1906.
  • Bhattacharya, M., & Basak, T. (2021). Analysis of multiple steady states for natural convection of Newtonian fluids in a square enclosure. Physics of Fluids, 33(10), 103605.
  • Hadidi, N., Rebhi, R., Bennacer, R., Menni, Y., Ameur, H., Lorenzini, G., ... & Ahmad, H. (2021). Thermosolutal natural convection across an inclined square enclosure partially filled with a porous medium. Results in Physics, 21, 103821.
  • Liang, X., Zhang, H., & Tian, Z. (2021). A fourth-order compact difference algorithm for numerical solution of natural convection in an inclined square enclosure. Numerical Heat Transfer, Part A: Applications, 80(6), 255-290.
  • Subhani, S. (2021). Natural Convection Heat Transfer Enhancement of Circular Obstacle within Square Enclosure. Journal of Thermal Analysis and Calorimetry, 1-19.
  • Sheikholeslami, M., & Shamlooei, M. (2017). Fe3O4–H2O nanofluid natural convection in presence of thermal radiation. International Journal of Hydrogen Energy, 42(9), 5708-5718.
  • Dogonchi, A. S. (2019). Heat transfer by natural convection of Fe3O4-water nanofluid in an annulus between a wavy circular cylinder and a rhombus. International Journal of Heat and Mass Transfer, 130, 320-332.
  • Sheikholeslami, M., Shehzad, S. A., & Kumar, R. (2018). Natural convection of Fe3O4-ethylene glycol nanouid under the impact of electric field in a porous enclosure. Communications in Theoretical Physics, 69(6), 667.
  • Moraveji, M. K., & Hejazian, M. (2013). Natural convection in a rectangular enclosure containing an oval-shaped heat source and filled with Fe3O4/water nanofluid. International communications in heat and mass transfer, 44, 135-146.
  • Gürdal, M., Pazarlıoğlu, H. K., Tekir, M., Arslan, K., & Gedik, E. (2021). Numerical Investigation on Turbulent Flow and Heat Transfer Characteristics of Ferro-Nanofluid Flowing in Dimpled Tube under Magnetic Field Effect. Applied Thermal Engineering, 117655.
  • Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal, 11(2), 151-170.
  • Xuan, Y., & Roetzel, W. (2000). Conceptions for heat transfer correlation of nanofluids. International Journal of heat and Mass transfer, 43(19), 3701-3707.
  • Wang, X., & Xu, X. S. U. S. ChoiS., 1999,". Thermal conductivity of nanoparticle-fluid mixture, 474-480.
  • Hamilton, R. L., & Crosser, O. K. (1962). Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering chemistry fundamentals, 1(3), 187-191.
  • Alsabery, A. I., Gedik, E., Chamkha, A. J., & Hashim, I. (2020). Impacts of heated rotating inner cylinder and two-phase nanofluid model on entropy generation and mixed convection in a square cavity. Heat and Mass Transfer, 56(1), 321-338.
  • Khanafer, K., Vafai, K., & Lightstone, M. (2003). Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International journal of heat and mass transfer, 46(19), 3639-3653.
  • Ghaffarpasand, O. (2016). Numerical study of MHD natural convection inside a sinusoidally heated lid-driven cavity filled with Fe3O4-water nanofluid in the presence of Joule heating. Applied Mathematical Modelling, 40(21-22), 9165-9182.

Impact of Fe3O4/water on Natural Convection in Square Enclosure

Yıl 2021, Sayı: 28, 675 - 683, 30.11.2021
https://doi.org/10.31590/ejosat.1010066

Öz

Natural convection characteristics in a 2D square enclosure (10 mm x 10 mm) have been investigated detailly under natural convection conditions (103≤Gr≤105). A model has been developed to analyze the dispersed nanoparticle effect on natural convection performance in an enclosure. The left vertical wall is maintained at a high temperature, while the right vertical wall is kept at a low temperature, whereas horizontal walls are assumed to be insulated. Fe3O4/water (0≤φ≤1.0) nanofluid has been utilized to analyze the convection enhancement in the enclosure. To elucidate flow characteristics and heat transfer performance of Fe3O4/water nanofluid, temperature, velocity streamline, and vorticity contours have been taken place. It is concluded that nanoparticle dispersion in base fluid enhances the natural convection heat transfer. Also, Grashof number has an important role in heat transfer mechanism

Kaynakça

  • Savio, R. R., Shaik, S., & Kumar, R. S. (2021). Numerical study of natural convection around a square cylinder within a square enclosure for different orientations. Journal of Thermal Analysis and Calorimetry, 1-15.
  • Singh, A. P., Kumar, A., & Singh, O. P. (2021). Natural convection solar air heater: Bell-mouth integrated converging channel for high flow applications. Building and Environment, 187, 107367.
  • Pera, L., & Gebhart, B. (1973). Natural convection boundary layer flow over horizontal and slightly inclined surfaces. International Journal of Heat and Mass Transfer, 16(6), 1131-1146.
  • Jones, H., & Marshall, J. (1993). Convection with rotation in a neutral ocean: A study of open-ocean deep convection. Journal of Physical Oceanography, 23(6), 1009-1039.
  • Kim, B. S., Lee, D. S., Ha, M. Y., & Yoon, H. S. (2008). A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations. International journal of heat and mass transfer, 51(7-8), 1888-1906.
  • Bhattacharya, M., & Basak, T. (2021). Analysis of multiple steady states for natural convection of Newtonian fluids in a square enclosure. Physics of Fluids, 33(10), 103605.
  • Hadidi, N., Rebhi, R., Bennacer, R., Menni, Y., Ameur, H., Lorenzini, G., ... & Ahmad, H. (2021). Thermosolutal natural convection across an inclined square enclosure partially filled with a porous medium. Results in Physics, 21, 103821.
  • Liang, X., Zhang, H., & Tian, Z. (2021). A fourth-order compact difference algorithm for numerical solution of natural convection in an inclined square enclosure. Numerical Heat Transfer, Part A: Applications, 80(6), 255-290.
  • Subhani, S. (2021). Natural Convection Heat Transfer Enhancement of Circular Obstacle within Square Enclosure. Journal of Thermal Analysis and Calorimetry, 1-19.
  • Sheikholeslami, M., & Shamlooei, M. (2017). Fe3O4–H2O nanofluid natural convection in presence of thermal radiation. International Journal of Hydrogen Energy, 42(9), 5708-5718.
  • Dogonchi, A. S. (2019). Heat transfer by natural convection of Fe3O4-water nanofluid in an annulus between a wavy circular cylinder and a rhombus. International Journal of Heat and Mass Transfer, 130, 320-332.
  • Sheikholeslami, M., Shehzad, S. A., & Kumar, R. (2018). Natural convection of Fe3O4-ethylene glycol nanouid under the impact of electric field in a porous enclosure. Communications in Theoretical Physics, 69(6), 667.
  • Moraveji, M. K., & Hejazian, M. (2013). Natural convection in a rectangular enclosure containing an oval-shaped heat source and filled with Fe3O4/water nanofluid. International communications in heat and mass transfer, 44, 135-146.
  • Gürdal, M., Pazarlıoğlu, H. K., Tekir, M., Arslan, K., & Gedik, E. (2021). Numerical Investigation on Turbulent Flow and Heat Transfer Characteristics of Ferro-Nanofluid Flowing in Dimpled Tube under Magnetic Field Effect. Applied Thermal Engineering, 117655.
  • Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal, 11(2), 151-170.
  • Xuan, Y., & Roetzel, W. (2000). Conceptions for heat transfer correlation of nanofluids. International Journal of heat and Mass transfer, 43(19), 3701-3707.
  • Wang, X., & Xu, X. S. U. S. ChoiS., 1999,". Thermal conductivity of nanoparticle-fluid mixture, 474-480.
  • Hamilton, R. L., & Crosser, O. K. (1962). Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering chemistry fundamentals, 1(3), 187-191.
  • Alsabery, A. I., Gedik, E., Chamkha, A. J., & Hashim, I. (2020). Impacts of heated rotating inner cylinder and two-phase nanofluid model on entropy generation and mixed convection in a square cavity. Heat and Mass Transfer, 56(1), 321-338.
  • Khanafer, K., Vafai, K., & Lightstone, M. (2003). Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International journal of heat and mass transfer, 46(19), 3639-3653.
  • Ghaffarpasand, O. (2016). Numerical study of MHD natural convection inside a sinusoidally heated lid-driven cavity filled with Fe3O4-water nanofluid in the presence of Joule heating. Applied Mathematical Modelling, 40(21-22), 9165-9182.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hayati Kadir Pazarlıoğlu 0000-0002-9365-9431

Mutlu Tekir 0000-0003-2289-7034

Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 28

Kaynak Göster

APA Pazarlıoğlu, H. K., & Tekir, M. (2021). Impact of Fe3O4/water on Natural Convection in Square Enclosure. Avrupa Bilim Ve Teknoloji Dergisi(28), 675-683. https://doi.org/10.31590/ejosat.1010066