Araştırma Makalesi
BibTex RIS Kaynak Göster

Modifiye Hummers Yöntemi ile Elde Edilen Grafen Oksit Sentezleri İçin: Kısım 1, X Işını Difraksiyonu Analizi

Yıl 2021, Sayı: 28, 968 - 971, 30.11.2021
https://doi.org/10.31590/ejosat.1012346

Öz

Grafen Oksit, 2 boyutlu ve oksijen içeren fonksiyonel grupların yer aldığı karbon esaslı bir malzemedir. Son yıllarda grafen oksit esaslı malzemeler, bilim adamları tarafından çok büyük bir ilgi görmektedir. Grafen oksidin özellikleri; morfolojisine, doğasına ve reaksiyon şartlarına bağlı olmasından dolayı farklı şartlarda sentezlenen grafen oksidin özellikleri de farklı olmaktadır. Dolayısıyla literatüre giren her bir grafen oksit sentez çalışmasının önemli bir katkı sağlayabileceği düşünülmektedir. Bu çalışmada, Hummers yönteminde kullanılan sodyum nitrat konsantrasyonu değiştirilerek elde edilen sentezlerin başarılı bir şekilde grafen oksite dönüşüp dönüşmediği ve değişen yapısal özellikleri X ray Difraksiyonu analizi ile incelenmiştir. Analiz sonuçlarından hegzagonal grafit kristalinde; 2θ:26,53°'ye ait karakteristik keskin pikin, kimyasal oksidasyon sonrası kaybolup 2θ:11,53°’de yeni bir pikin oluştuğu, d tabaka aralığının 0,34 nm'den 0,77 nm'ye genişlediği, kristal çapın 34,56 nm’den ortalama 7,22 nm’ye azaldığı ve tabaka sayısının 102’den 9’a düştüğü belirlenmiştir. Sonuç olarak bu şartlarda elde edilen sentezlerin, farklı özelliklere sahip grafen oksit örnekleri olduğu ve literatür ile uyum içerisinde oldukları söylenebilir.

Destekleyen Kurum

Atatürk Üniversitesi BAPSİS

Proje Numarası

6814

Teşekkür

Bu çalışma, Atatürk Üniversitesi BAPSİS Birimi tarafından Temel Araştırma Projesi olarak desteklenmiştir.

Kaynakça

  • Moosa, A., and Abed, M. (2021). Graphene preparation and grapfite exfoliation. Turkish journal of Chemistry, 45(3),493-519.
  • Dresselhaus, G., Dresselhaus, M. S., & Saito, R. (1998). Physical properties of carbon nanotubes. World scientific.
  • Brisebois, P. P., & Siaj, M. (2020). Harvesting graphene oxide–years 1859 to 2019: a review of its structure, synthesis, properties and exfoliation. Journal of Materials Chemistry C, 8(5), 1517-1547.
  • Paulchamy, B., Arthi, G., & Lignesh, B. D. (2015). A simple approach to stepwise synthesis of graphene oxide nanomaterial. J Nanomed Nanotechnol, 6(1), 1.
  • Tiyek, İ., Dönmez, U., Yıldırım, B., Alma, M. H., Ersoy, M. S., & Karataş, Ş. (2016). Kimyasal yöntem ile indirgenmiş grafen oksit sentezi ve karakterizasyonu. Sakarya University Journal of Science, 20(2), 349-357.
  • Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chemical Society Reviews, 41(2), 666-686.
  • Sun, L., & Fugetsu, B. (2013). Mass production of graphene oxide from expanded graphite. Materials Letters, 109, 207-210.
  • Chen, J., Yao, B., Li, C., & Shi, G. (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 64, 225-229.
  • Shamaila, S., Sajjad, A. K. L., & Iqbal, A. (2016). Modifications in development of graphene oxide synthetic routes. Chemical Engineering Journal, 294, 458-477.
  • Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the american chemical society, 80(6), 1339-1339.
  • Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical society reviews, 39(1), 228-240.
  • Lavin-Lopez, M. D. P., Romero, A., Garrido, J., Sanchez-Silva, L., & Valverde, J. L. (2016). Influence of different improved hummers method modifications on the characteristics of graphite oxide in order to make a more easily scalable method. Industrial & Engineering Chemistry Research, 55(50), 12836-12847.
  • Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., ... & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS nano, 4(8), 4806-4814.
  • Peng, L., Xu, Z., Liu, Z., Wei, Y., Sun, H., Li, Z., ... & Gao, C. (2015). An iron-based green approach to 1-h production of single-layer graphene oxide. Nature communications, 6(1), 1-9.
  • Zhao, J., Liu, L., & Li, F. (2015). Graphene oxide: physics and applications (Vol. 1, p. 161). London, UK:: Springer.
  • Siburian, R., Sihotang, H., Raja, S. L., Supeno, M., & Simanjuntak, C. (2018). New route to synthesize of graphene nano sheets. Oriental Journal of Chemistry, 34(1), 182.
  • Divya, K. S., Chandran, A., Reethu, V. N., & Mathew, S. (2018). Enhanced photocatalytic performance of RGO/Ag nanocomposites produced via a facile microwave irradiation for the degradation of Rhodamine B in aqueous solution. Applied Surface Science, 444, 811-818.
  • ullah Khan, F., Mahmood, S., Ahmad, Z., Mahmood, T., & Nizami, Z. A. Graphene oxide synthesis by facile method and its characterization.
  • ZFan, Z., Wang, K., Wei, T., Yan, J., Song, L., & Shao, B. (2010). An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon, 48(5), 1686-1689.
  • Huang, H. H., De Silva, K. K. H., Kumara, G. R. A., & Yoshimura, M. (2018). Structural evolution of hydrothermally derived reduced graphene oxide. Scientific reports, 8(1), 1-9.

For Graphene Oxide Synthesis Obtained by Modified Hummers Method: Part 1, X-Ray Diffraction Analysis

Yıl 2021, Sayı: 28, 968 - 971, 30.11.2021
https://doi.org/10.31590/ejosat.1012346

Öz

Graphene Oxide is a carbon-based material with 2-dimensional and oxygen-containing functional groups. In recent years, graphene oxide-based materials have attracted great interest by scientists. Properties of graphene oxide; Since it depends on its morphology, nature and reaction conditions, the properties of graphene oxide synthesized under different conditions are also different. Therefore, every graphene oxide synthesis study that enters the literature makes an important contribution. In this study, whether the syntheses obtained by changing the sodium nitrate concentration used in the Hummers method were successfully converted to graphene oxide and their changing structural properties were investigated by X-ray diffraction analysis. From the analysis results, it was determined that in the hexagonal graphite crystal; the characteristic sharp peak at 2θ:26.53° disappears after chemical oxidation and a new peak forms at 2θ:11.53°, the d layer spacing expands from 0.34 nm to 0.77 nm, the crystal diameter decreases from 34.56 nm to an average of 7.22 nm, and the number of layers decreases from an average of 102 to an average of 9. Accordingly, it can be said that the syntheses obtained under these conditions are graphene oxide samples with different properties and are in agreement with the literature.

Proje Numarası

6814

Kaynakça

  • Moosa, A., and Abed, M. (2021). Graphene preparation and grapfite exfoliation. Turkish journal of Chemistry, 45(3),493-519.
  • Dresselhaus, G., Dresselhaus, M. S., & Saito, R. (1998). Physical properties of carbon nanotubes. World scientific.
  • Brisebois, P. P., & Siaj, M. (2020). Harvesting graphene oxide–years 1859 to 2019: a review of its structure, synthesis, properties and exfoliation. Journal of Materials Chemistry C, 8(5), 1517-1547.
  • Paulchamy, B., Arthi, G., & Lignesh, B. D. (2015). A simple approach to stepwise synthesis of graphene oxide nanomaterial. J Nanomed Nanotechnol, 6(1), 1.
  • Tiyek, İ., Dönmez, U., Yıldırım, B., Alma, M. H., Ersoy, M. S., & Karataş, Ş. (2016). Kimyasal yöntem ile indirgenmiş grafen oksit sentezi ve karakterizasyonu. Sakarya University Journal of Science, 20(2), 349-357.
  • Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chemical Society Reviews, 41(2), 666-686.
  • Sun, L., & Fugetsu, B. (2013). Mass production of graphene oxide from expanded graphite. Materials Letters, 109, 207-210.
  • Chen, J., Yao, B., Li, C., & Shi, G. (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 64, 225-229.
  • Shamaila, S., Sajjad, A. K. L., & Iqbal, A. (2016). Modifications in development of graphene oxide synthetic routes. Chemical Engineering Journal, 294, 458-477.
  • Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the american chemical society, 80(6), 1339-1339.
  • Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical society reviews, 39(1), 228-240.
  • Lavin-Lopez, M. D. P., Romero, A., Garrido, J., Sanchez-Silva, L., & Valverde, J. L. (2016). Influence of different improved hummers method modifications on the characteristics of graphite oxide in order to make a more easily scalable method. Industrial & Engineering Chemistry Research, 55(50), 12836-12847.
  • Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., ... & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS nano, 4(8), 4806-4814.
  • Peng, L., Xu, Z., Liu, Z., Wei, Y., Sun, H., Li, Z., ... & Gao, C. (2015). An iron-based green approach to 1-h production of single-layer graphene oxide. Nature communications, 6(1), 1-9.
  • Zhao, J., Liu, L., & Li, F. (2015). Graphene oxide: physics and applications (Vol. 1, p. 161). London, UK:: Springer.
  • Siburian, R., Sihotang, H., Raja, S. L., Supeno, M., & Simanjuntak, C. (2018). New route to synthesize of graphene nano sheets. Oriental Journal of Chemistry, 34(1), 182.
  • Divya, K. S., Chandran, A., Reethu, V. N., & Mathew, S. (2018). Enhanced photocatalytic performance of RGO/Ag nanocomposites produced via a facile microwave irradiation for the degradation of Rhodamine B in aqueous solution. Applied Surface Science, 444, 811-818.
  • ullah Khan, F., Mahmood, S., Ahmad, Z., Mahmood, T., & Nizami, Z. A. Graphene oxide synthesis by facile method and its characterization.
  • ZFan, Z., Wang, K., Wei, T., Yan, J., Song, L., & Shao, B. (2010). An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon, 48(5), 1686-1689.
  • Huang, H. H., De Silva, K. K. H., Kumara, G. R. A., & Yoshimura, M. (2018). Structural evolution of hydrothermally derived reduced graphene oxide. Scientific reports, 8(1), 1-9.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ömer Laçin 0000-0002-5276-3056

Bünyamin Dönmez 0000-0002-7680-0755

Proje Numarası 6814
Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 28

Kaynak Göster

APA Laçin, Ö., & Dönmez, B. (2021). Modifiye Hummers Yöntemi ile Elde Edilen Grafen Oksit Sentezleri İçin: Kısım 1, X Işını Difraksiyonu Analizi. Avrupa Bilim Ve Teknoloji Dergisi(28), 968-971. https://doi.org/10.31590/ejosat.1012346