Araştırma Makalesi
BibTex RIS Kaynak Göster

Modifiye Hummers Yöntemi ile Elde Edilen Grafen Oksit Sentezleri İçin: Kısım3, Fourier Dönüşümlü Kızılötesi Spektroskopisi Analizi

Yıl 2021, Sayı: 28, 985 - 989, 30.11.2021
https://doi.org/10.31590/ejosat.1012387

Öz

Bu çalışmada, Fourier Dönüşümlü Kızılötesi Spektroskopisi analizi ile değişen sodyum nitrat konsantrasyonlarıyla elde edilen sentezler sonucunda grafen okside dönüşümü ve yapısal özelliklerinin değişimi incelenmiştir. Grafit spektrumunda, herhangi bir fonksiyonel grupla ilgili anlamlı pikler gözlenmemiştir. Kimyasal oksidasyondan sonra spektrumlardan grafitin yapısal değişime uğradığı ve oksijen içeren fonksiyonel gruplara atfedilen yeni bantlar ortaya çıktığı görülmüştür. Grafen oksit spektrumlarında mutlaka görülmesi gereken 1723 cm-1 ve 1619 cm-1 bantları sırasıyla ~1717 cm-1 ve ~1615 cm-1 ortaya çıkmıştır. Bu analizden elde edilen sonuçların, X ışını fotoelektron spektroskopisi analizindeki sonuçlarla karşılaştırıldığında uyum içerisinde olduğu gözlenmiştir. Bütün sonuçlar ışığında, bu şartlarda elde edilen sentezlerin, farklı özelliklere sahip grafen oksit örnekleri oldukları ve literatür ile uyum içerisinde oldukları söylenebilir.

Destekleyen Kurum

Atatürk Üniversitesi BAPSİS

Proje Numarası

6814

Teşekkür

Bu çalışma, Atatürk Üniversitesi BAPSİS Birimi tarafından Temel Araştırma Projesi olarak desteklenmiştir.

Kaynakça

  • Moosa, A., and Abed, M. (2021). Graphene preparation and grapfite exfoliation. Turkish journal of Chemistry, 45(3),493-519.
  • Dresselhaus, G., Dresselhaus, M. S., & Saito, R. (1998). Physical properties of carbon nanotubes. World scientific.
  • Chen, J., Yao, B., Li, C., & Shi, G. (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 64, 225-229.
  • Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chemical Society Reviews, 41(2), 666-686.
  • Tiyek, İ., Dönmez, U., Yıldırım, B., Alma, M. H., Ersoy, M. S., & Karataş, Ş. (2016). Kimyasal yöntem ile indirgenmiş grafen oksit sentezi ve karakterizasyonu. Sakarya University Journal of Science, 20(2), 349-357.
  • Paulchamy, B., Arthi, G., & Lignesh, B. D. (2015). A simple approach to stepwise synthesis of graphene oxide nanomaterial. J Nanomed Nanotechnol, 6(1), 1.
  • Sun, L., & Fugetsu, B. (2013). Mass production of graphene oxide from expanded graphite. Materials Letters, 109, 207-210.
  • Brisebois, P. P., & Siaj, M. (2020). Harvesting graphene oxide–years 1859 to 2019: a review of its structure, synthesis, properties and exfoliation. Journal of Materials Chemistry C, 8(5), 1517-1547.
  • Shamaila, S., Sajjad, A. K. L., & Iqbal, A. (2016). Modifications in development of graphene oxide synthetic routes. Chemical Engineering Journal, 294, 458-477.
  • Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the american chemical society, 80(6), 1339-1339.
  • Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical society reviews, 39(1), 228-240.
  • Lavin-Lopez, M. D. P., Romero, A., Garrido, J., Sanchez-Silva, L., & Valverde, J. L. (2016). Influence of different improved hummers method modifications on the characteristics of graphite oxide in order to make a more easily scalable method. Industrial & Engineering Chemistry Research, 55(50), 12836-12847.
  • Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., ... & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS nano, 4(8), 4806-4814.
  • Peng, L., Xu, Z., Liu, Z., Wei, Y., Sun, H., Li, Z., ... & Gao, C. (2015). An iron-based green approach to 1-h production of single-layer graphene oxide. Nature communications, 6(1), 1-9.
  • Eigler, S., & Dimiev, A. M. (2016). Characterization techniques. Graphene Oxide: Fundamentals and Applications. Chichester, UK: John Wiley and Sons.
  • Pendolino, F., Parisini, E., & Lo Russo, S. (2014). Time-dependent structure and solubilization kinetics of graphene oxide in methanol and water dispersions. The Journal of Physical Chemistry C, 118(48), 28162-28169.
  • Ambrosi, A., Chua, C. K., Bonanni, A., & Pumera, M. (2012). Lithium aluminum hydride as reducing agent for chemically reduced graphene oxides. Chemistry of Materials, 24(12), 2292-2298.
  • Seredych, M., & Bandosz, T. J. (2010). Combined role of water and surface chemistry in reactive adsorption of ammonia on graphite oxides. Langmuir, 26(8), 5491-5498.
  • Szabó, T., Berkesi, O., & Dékány, I. (2005). DRIFT study of deuterium-exchanged graphite oxide. Carbon, 15(43), 3186-3189.

For Graphene Oxide Synthesis Obtained by Modified Hummers Method: Part 3, Fourier Transform Infrared Spectroscopy Analysis

Yıl 2021, Sayı: 28, 985 - 989, 30.11.2021
https://doi.org/10.31590/ejosat.1012387

Öz

In this study, the conversion of graphene to oxide and the change of its structural properties as a result of syntheses obtained with varying sodium nitrate concentrations by Fourier Transform Infrared Spectroscopy analysis were investigated. No significant peaks related to any functional group were observed in the graphite spectrum. In the spectra after chemical oxidation, it was observed that the graphite undergoes a structural changes and new bands appear in which oxygen-containing functional groups are seen. The 1723 cm-1 and 1619 cm-1 bands, which are a must-see in the graphene oxide spectra, appeared ~1717 cm-1 and ~1615 cm-1, respectively. It was observed that the results obtained from this analysis were in good agreement with the results from the X-ray photoelectron spectroscopy analysis. In the light of all the results, it can be said that the syntheses obtained under these conditions are graphene oxide samples with different properties and are in agreement with the literature.

Proje Numarası

6814

Kaynakça

  • Moosa, A., and Abed, M. (2021). Graphene preparation and grapfite exfoliation. Turkish journal of Chemistry, 45(3),493-519.
  • Dresselhaus, G., Dresselhaus, M. S., & Saito, R. (1998). Physical properties of carbon nanotubes. World scientific.
  • Chen, J., Yao, B., Li, C., & Shi, G. (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 64, 225-229.
  • Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chemical Society Reviews, 41(2), 666-686.
  • Tiyek, İ., Dönmez, U., Yıldırım, B., Alma, M. H., Ersoy, M. S., & Karataş, Ş. (2016). Kimyasal yöntem ile indirgenmiş grafen oksit sentezi ve karakterizasyonu. Sakarya University Journal of Science, 20(2), 349-357.
  • Paulchamy, B., Arthi, G., & Lignesh, B. D. (2015). A simple approach to stepwise synthesis of graphene oxide nanomaterial. J Nanomed Nanotechnol, 6(1), 1.
  • Sun, L., & Fugetsu, B. (2013). Mass production of graphene oxide from expanded graphite. Materials Letters, 109, 207-210.
  • Brisebois, P. P., & Siaj, M. (2020). Harvesting graphene oxide–years 1859 to 2019: a review of its structure, synthesis, properties and exfoliation. Journal of Materials Chemistry C, 8(5), 1517-1547.
  • Shamaila, S., Sajjad, A. K. L., & Iqbal, A. (2016). Modifications in development of graphene oxide synthetic routes. Chemical Engineering Journal, 294, 458-477.
  • Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the american chemical society, 80(6), 1339-1339.
  • Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical society reviews, 39(1), 228-240.
  • Lavin-Lopez, M. D. P., Romero, A., Garrido, J., Sanchez-Silva, L., & Valverde, J. L. (2016). Influence of different improved hummers method modifications on the characteristics of graphite oxide in order to make a more easily scalable method. Industrial & Engineering Chemistry Research, 55(50), 12836-12847.
  • Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., ... & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS nano, 4(8), 4806-4814.
  • Peng, L., Xu, Z., Liu, Z., Wei, Y., Sun, H., Li, Z., ... & Gao, C. (2015). An iron-based green approach to 1-h production of single-layer graphene oxide. Nature communications, 6(1), 1-9.
  • Eigler, S., & Dimiev, A. M. (2016). Characterization techniques. Graphene Oxide: Fundamentals and Applications. Chichester, UK: John Wiley and Sons.
  • Pendolino, F., Parisini, E., & Lo Russo, S. (2014). Time-dependent structure and solubilization kinetics of graphene oxide in methanol and water dispersions. The Journal of Physical Chemistry C, 118(48), 28162-28169.
  • Ambrosi, A., Chua, C. K., Bonanni, A., & Pumera, M. (2012). Lithium aluminum hydride as reducing agent for chemically reduced graphene oxides. Chemistry of Materials, 24(12), 2292-2298.
  • Seredych, M., & Bandosz, T. J. (2010). Combined role of water and surface chemistry in reactive adsorption of ammonia on graphite oxides. Langmuir, 26(8), 5491-5498.
  • Szabó, T., Berkesi, O., & Dékány, I. (2005). DRIFT study of deuterium-exchanged graphite oxide. Carbon, 15(43), 3186-3189.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ömer Laçin 0000-0002-5276-3056

Bünyamin Dönmez 0000-0002-7680-0755

Proje Numarası 6814
Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 28

Kaynak Göster

APA Laçin, Ö., & Dönmez, B. (2021). Modifiye Hummers Yöntemi ile Elde Edilen Grafen Oksit Sentezleri İçin: Kısım3, Fourier Dönüşümlü Kızılötesi Spektroskopisi Analizi. Avrupa Bilim Ve Teknoloji Dergisi(28), 985-989. https://doi.org/10.31590/ejosat.1012387