Traktör satış tahmini, traktör üreticileri ve bayileri açısından gelecek dönemdeki planlamaların yapılması açısından büyük önem taşımaktadır. Satış tahmini pek çok değişkene bağlı olması sebebi ile oldukça zor bir problemdir. Günümüzde ise yapay sinir ağları yöntemleri ile geçmişe dönük verilerden yola çıkılarak tahmin gerçekleştirilebilmektedir. Bu çalışmada 2016-2019 yılları arasındaki seçilmiş veriler kullanılarak yapay sinir ağları ile gerçekleştirilen analizlerle traktör satış tahmini gerçekleştirilmiştir. İleri beslemeli geri yayılım yapay sinir ağı metodu kullanılarak 2 ve 3 katmanlı olarak gerçekleştirilen test sonuçlarına göre en iyi tahminin LOGSIG transfer fonksiyonunun kullanıldığı 3 katmanlı, 1. ara katmanında 2 ve 2. ara katmanında 4 nöron bulunan yapay sinir ağı tipinde en iyi sonucu verdiği belirlenmiştir.
Tractor sales forecasting has a high importance for tractor manufacturers and dealers for future planning. However, sales forecasting is not an easy problem to be solved. Nowadays, using artificial neural networks tools future predictions could be made using past data. In this study, using selected past data from 2016 to 2019 tractor sales forecasting was predicted using artificial neural network. Using feed-forward back propagation for 2 and 3 layered neural networks it was found out that the best prediction was obtained for using LOGSIG transfer function for 3-layered artificial neural network with 2 neurons in the first layer and 4 neurons in the second layer.
Agricultural Tractors Tractor Sales Forecasting Artificial Neural Networks
Birincil Dil | Türkçe |
---|---|
Konular | Mühendislik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 31 Aralık 2021 |
Yayımlandığı Sayı | Yıl 2021 Sayı: 31 |