Araştırma Makalesi
BibTex RIS Kaynak Göster

Kriz Alanlarında Sığınakları Değerlendirmek için CBS’ye Dayalı Bir Risk Değerlendirme Yaklaşımı: İdlib/Suriye’de Uygulama

Yıl 2021, Sayı: 31, 837 - 851, 31.12.2021
https://doi.org/10.31590/ejosat.1007768

Öz

Suriye’deki kriz 15 Mart 2011’de başladığından beri milyonlarca insan ülkeden kaçmıştır ve çok sayıda birey yerlerini değiştirmiştir. Özellikle ülke içinde göç etmek zorunda kalmış insanlar sığınak ve barınma açısından zorluklarla karşılaşmaktadır. Bu çalışmanın amacı, bölgeden gerçek veriyi kullanarak, kriz alanlarında insani yardım kapsamında sığınakları seçmenin risk değerlendirmesi için yeni bir yaklaşım önermektir. Çalışmaya; kriz alanlarında risk değerlendirmesi yürütme, Delphi tekniği ile riskleri/kriterleri belirleme, Aralık Tip-2 Bulanık Analitik Hiyerarşi Prosesi (IT2F-AHP) kullanarak riskleri önceliklendirme ve son olarak düşük risk değerlerine sahip sığınakları seçme dâhil edilmiştir. Bu amaçla, Coğrafi Bilgi Sistemi’ni (CBS) kullanarak her risk/kriter için risk haritaları oluşturulmuştur ve çalışma bölgesindeki her alanın son risk değerini bulmak için, Bulanık AHP’den elde edilen ağırlıklardan faydalanarak ve bu risk haritaları örtüştürülerek tek bir nihai risk haritasına dönüştürülmüştür. Son olarak, afet ve kriz zamanlarındaki barınma çözümlerini kolaylaştırabileceği ve hızlandırabileceğinden dolayı, karar vericinin düşük risk değerli sığınakları göz önünde bulundurmasını sağlamak için, sığınakların nihai risk değerleri bulunmuş ve sığınaklar sıralanmıştır.

Kaynakça

  • Abdalla, R., Tao, C. V., Wu, H., & Maqsood, I. (2006). A GIS-supported 3D approach for flood risk assessment of the Qu'Appelle River, Southern Saskatchewan. International Journal of Risk Assessment and Management, 6(4-6), 440-455. https://doi.org/10.1504/IJRAM.2006.009545
  • Abdalla, R., Elawad, Y., Chen, Z., Han, S. S., & Xia, R. (2014). A GIS-supported fuzzy-set approach for flood risk assessment. Canadian Water Resources Journal/Revue canadienne des ressources hydriques, 39(1), 3-14. https://doi.org/10.1080/07011784.2014.881058
  • Ak, R., Bahrami, M., & Bozkaya, B. (2020). A time-based model and GIS framework for assessing hazardous materials transportation risk in urban areas. Journal of Transport & Health, 19, 100943. https://doi.org/10.1016/j.jth.2020.100943
  • Al-Awadhi, T., Charabi, Y., Choudri, B. S., & Bani Oraba, Y. (2018). Flooding risk analysis: A case study of Muscat Governorate, Sultanate of Oman. Human and Ecological Risk Assessment: An International Journal, 24(3), 667-678. https://doi.org/10.1080/10807039.2017.1396441
  • Alcorn, R., Panter, K. S., & Gorsevski, P. V. (2013). A GIS-based volcanic hazard and risk assessment of eruptions sourced within Valles Caldera, New Mexico. Journal of volcanology and geothermal research, 267, 1-14. https://doi.org/10.1016/j.jvolgeores.2013.09.005
  • Aye, Z. C., Jaboyedoff, M., Derron, M. H., Van Westen, C. J., Hussin, H. Y., Ciurean, R. L., ... & Pasuto, A. (2016). An interactive web-GIS tool for risk analysis: a case study in the Fella River basin, Italy. Natural Hazards and Earth System Sciences, 16(1), 85-101. https://doi.org/10.5194/nhess-16-85-2016
  • Benguerai, A., Benabdeli, K., & Harizia, A. (2019). Forest Fire Risk Assessment Model Using Remote Sensing and GIS Techniques in Northwest Algeria. Acta Silvatica et Lignaria Hungarica: An International Journal in Forest, Wood and Environmental Sciences, 15(1), 9-21. https://doi.org/10.2478/aslh-2019-0001
  • Beni, L. H., Villeneuve, S., LeBlanc, D. I., Côté, K., Fazil, A., Otten, A., ... & Delaquis, P. (2012). Spatio-temporal assessment of food safety risks in Canadian food distribution systems using GIS. Spatial and Spatio-temporal Epidemiology, 3(3), 215-223. https://doi.org/10.1016/j.sste.2012.02.009
  • Bilak, A., Caterina, M., Charron, G., Crozet, S., Diaz-Leal, L. R., Foster, F., Ginnetti, J., Giorgi, J., Glatz, A. K, Guyon, K., Howard, C., Kesmaecker-Wissing, M., Kilany., S., Klos, J., Kok, F., Mccallin, B., Pagot, A., Rushing, E., Spurrel, C., Swain,
  • M., Turner, W., Walicki. N., & Yonetani, M. (2015). Global Overview 2015: People Internally Displaced by Conflict and Violence’ Internal Displacement Monitoring Centre, Norwegian Refugee Council: Geneva.
  • Burnley, C., Buda, D., & Kayitakire, F. (2008). Quantitative global model for armed conflict risk assessment. European Commission Joint Research Centre Institute for the Protection and Security of the Citizen Contact. https://doi.org/10.2788/83693
  • Cai, T., Li, X., Ding, X., Wang, J., & Zhan, J. (2019). Flood risk assessment based on hydrodynamic model and fuzzy comprehensive evaluation with GIS technique. International Journal of Disaster Risk Reduction, 35, 101077. https://doi.org/10.1016/j.ijdrr.2019.101077
  • Chen, W., Zhai, G., Fan, C., Jin, W., & Xie, Y. (2017). A planning framework based on system theory and GIS for urban emergency shelter system: A case of Guangzhou, China. Human and Ecological Risk Assessment: An International Journal, 23(3), 441–456. https://doi.org/10.1080/10807039.2016.1185692
  • Chen, W., Zhai, G., Ren, C., Shi, Y., & Zhang, J. (2018). Urban resources selection and allocation for emergency shelters: In a multi-hazard environment. International Journal of Environmental Research and Public Health, 15(6), 1261. https://doi.org/10.3390/ijerph15061261
  • Çankaya, Z. C., Süzen, M. L., Yalçıner, A. C., Kolat, C., Zaytsev, A., & Aytore, B. (2016). A new GIS- based tsunami risk evaluation: MeTHuVA (METU tsunami human vulnerability assessment) at Yenikapı, Istanbul. Earth, Planets and Space, 68(1), 133. https://doi.org/10.1186/s40623-016-0507-0
  • Çeliker, M., Yildiz, O., & Koçer, N. N. (2019). Evaluating solid waste landfill site selection using multi-criteria decision analysis and geographic information systems in the city of Elazığ, Turkey. Pamukkale University Journal of Engineering Sciences, 25(6), 683-691. https://doi.org/10.5505/pajes.2018.70493
  • Eccles, K. M., Pauli, B. D., & Chan, H. M. (2019). The Use of Geographic Information Systems for Spatial Ecological Risk Assessments: An Example from the Athabasca Oil Sands Area in Canada. Environmental Toxicology and Chemistry, 38(12), 2797-2810. https://doi.org/10.1002/etc.4577
  • Fedeski, M., & Gwilliam, J. (2007). Urban sustainability in the presence of flood and geological hazards: The development of a GIS-based vulnerability and risk assessment methodology. Landscape and Urban Planning, 83(1), 50-61 https://doi.org/10.1016/j.landurbplan.2007.05.012
  • Gallego, A., Calafat, C., Segura, M., & Quintanilla, I. (2019). Land planning and risk assessment for livestock production based on an outranking approach and GIS. Land Use Policy, 83, 606-621. https://doi.org/10.1016/j.landusepol.2018.10.02
  • Gao, C., Gao, C., Song, K., Ye, Z., & Dong, J. (2019). Regional water ecosystem risk assessment based on GIS and pollutant diffusion model: A case study of Shenzhen eco-industrial park. Process Safety and Environmental Protection, 130, 182-189. https://doi.org/10.1016/j.psep.2019.08.004
  • Hadipour, V., Vafaie, F., & Deilami, K. (2020). Coastal Flooding Risk Assessment Using a GIS-Based Spatial Multi-Criteria Decision Analysis Approach. Water, 12(9), 2379. https://doi.org/10.3390/w12092379
  • Hawchar, L., Naughton, O., Nolan, P., Stewart, M. G., & Ryan, P. C. (2020). A GIS-based Framework for High-Level Climate Change Risk Assessment of Critical Infrastructure. Climate Risk Management, 100235. https://doi.org/10.1016/j.crm.2020.100235
  • Heudtlass, P., Speybroeck, N., & Guha-Sapir, D. (2016). Excess mortality in refugees, internally displaced persons and resident populations in complex humanitarian emergencies (1998–2012)–insights from operational data. Conflict and health, 10(1), 1-11. https://doi.org/10.1186/s13031-016-0082-9
  • Huabin, W., Gangjun, L., Weiya, X., & Gonghui, W. (2005). GIS-based landslide hazard assessment: an overview. Progress in Physical Geography, 29(4), 548-567. https://doi.org/10.1191/0309133305pp462ra
  • INEE Toolkit - Welcome. (n.d.). Retrieved March 22, 2020, from https://toolkit.ineesite.org/
  • Isahak, A., Reza, M. I. H., Siwar, C., Ismail, S. M., Sulaiman, N., Hanafi, Z., Zainuddin, M. S., & Taha, M. R. (2018). Delineating risk zones and evaluation of shelter centres for flood disaster management along the Pahang River Basin, Malaysia. Jàmbá: Journal of Disaster Risk Studies, 10(1), 1–7. https://doi.org/10.4102/jamba.v10i1.501
  • Kahraman, C., Öztayşi, B., Sarı, İ. U., & Turanoğlu, E. (2014). Fuzzy Analytic Hierarchy Process with Interval Type-2 Fuzzy Sets. Knowledge-Based Systems, 59, 48-57. https://doi.org/10.1016/j.knosys.2014.02.001
  • Karimi, H., Amiri, S., Huang, J., & Karimi, A. (2019). Integrating GIS and multi-criteria decision analysis for landfill site selection, case study: Javanrood County in Iran. International Journal of Environmental Science and Technology, 16, 7305. https://doi.org/10.1007/s13762-018-2151-7
  • Lyu, H. M., Sun, W. J., Shen, S. L., & Arulrajah, A. (2018). Flood risk assessment in metro systems of mega-cities using a GIS-based modeling approach. Science of the Total Environment, 626, 1012- 1025. https://doi.org/10.1016/j.scitotenv.2018.01.138
  • Mock, N. B., Duale, S., Brown, L. F., Mathys, E., O’Maonaigh, H. C., Abul-Husn, N. K. L., & Elliott, S. (2004). Conflict and HIV: A framework for risk assessment to prevent HIV in conflict-affected settings in Africa. Emerging Themes in Epidemiology, 1, 1–16. https://doi.org/10.1186/1742-7622-1-6
  • Öztaysi, B. (2015). A group decision making approach using interval type-2 fuzzy AHP for enterprise information systems project selection. Multiple-Valued Logic and Soft Computing 24: 475-500.
  • Pence, J., Miller, I., Sakurahara, T., Whitacre, J., Reihani, S., Kee, E., & Mohaghegh, Z. (2019). GIS-Based Integration of Social Vulnerability and Level 3 Probabilistic Risk Assessment to Advance Emergency Preparedness, Planning, and Response for Severe Nuclear Power Plant Accidents. Risk Analysis, 39(6), 1262–1280. https://doi.org/10.1111/risa.13241
  • Psomiadis, E., Charizopoulos, N., Efthimiou, N., Soulis, K. X., & Charalampopoulos, I. (2020). Earth Observation and GIS-Based Analysis for Landslide Susceptibility and Risk Assessment. ISPRS International Journal of Geo-Information, 9(9), 552. https://doi.org/10.3390/ijgi9090552
  • Repetto, M. P., Burlando, M., Solari, G., De Gaetano, P., Pizzo, M., & Tizzi, M. (2018). A web-based GIS platform for the safe management and risk assessment of complex structural and infrastructural systems exposed to wind. Advances in Engineering Software, 117, 29-45. https://doi.org/10.1016/j.advengsoft.2017.03.002
  • Rincón, D., Khan, U. T., & Armenakis, C. (2018). Flood risk mapping using GIS and multi-criteria analysis: A greater Toronto area case study. Geosciences (Switzerland), 8, 275. https://doi.org/10.3390/geosciences8080275
  • Sahoo, B., & Bhaskaran, P. K. (2018). Multi-hazard risk assessment of coastal vulnerability from tropical cyclones–A GIS based approach for the Odisha coast. Journal of Environmental Management, 206, 1166-1178. https://doi.org/10.1016/j.jenvman.2017.10.075
  • Sarkar, S., Parihar, S. M., & Dutta, A. (2016). Fuzzy risk assessment modelling of East Kolkata Wetland Area: A remote sensing and GIS based approach. Environmental Modelling & Software, 75, 105- 118. https://doi.org/10.1016/j.envsoft.2015.10.003
  • Shalyari, N., Alinejad, A., Hashemi, A. H. G., RadFard, M., & Dehghani, M. (2019). Health risk assessment of nitrate in groundwater resources of Iranshahr using Monte Carlo simulation and geographic information system (GIS). MethodsX, 6, 1812-1821. https://doi.org/10.1016/j.mex.2019.07.024
  • Skilodimou, H. D., Bathrellos, G. D., Chousianitis, K., Youssef, A. M., & Pradhan, B. (2019). Multi-hazard assessment modeling via multi-criteria analysis and GIS: a case study. Environmental Earth Sciences, 78(2), 47. https://doi.org/10.1007/s12665-018-8003-4
  • Şentürk, E., & Erener, A. (2017). Determination of temporary shelter areas in natural disasters by gis: A case study, Gölcük/Turkey. International Journal of Engineering and Geosciences, 2(3), 84-90. https://doi.org/10.26833/ijeg.317314
  • Török, Z., Petrescu-Mag, R. M., Mereuță, A., Maloș, C. V., Arghiuș, V. I., & Ozunu, A. (2020). Analysis of territorial compatibility for Seveso-type sites using different risk assessment methods and GIS technique. Land Use Policy, 95, 103878. https://doi.org/10.1016/j.landusepol.2019.02.037
  • Uddin, K., Raj, Gurung D., Giriraj, A., & Shrestha, B. (2013). Application of remote sensing and GIS for flood hazard management: A case study from Sindh Province, Pakistan. American Journal of Geographic Information System, 1, 1–5.
  • UNHCR (2019) UNHCR - Internally Displaced People. Retrieved March 22, 2020, from https://www.unhcr.org/pages/49c3646c146.html
  • Wang, Y., Li, Z., Tang, Z., & Zeng, G. (2011). A GIS-based spatial multi-criteria approach for flood risk assessment in the Dongting Lake Region, Hunan, Central China. Water Resources Management, 25(13), 3465-3484. https://doi.org/10.1007/s11269-011-9866-2
  • Yariyan, P., Zabihi, H., Wolf, I. D., Karami, M., & Amiriyan, S. (2020). Earthquake risk assessment using an integrated Fuzzy Analytic Hierarchy Process with Artificial Neural Networks based on GIS: A case study of Sanandaj in Iran. International Journal of Disaster Risk Reduction, 50, 101705. https://doi.org/10.1016/j.ijdrr.2020.101705
  • Yu, J. H., & Lee, S. K. (2012). A conflict-risk assessment model for urban regeneration projects using Fuzzy-FMEA. KSCE Journal of Civil Engineering, 16(7), 1093–1103. https://doi.org/10.1007/s12205-012-1196-2
  • Zhang, J., Zhai, Y., Xue, P., Huan, H., Zhao, X., Teng, Y., & Wang, J. (2017). A GIS-based LVF model for semiquantitative assessment of groundwater pollution risk: A case study in Shenyang, NE China. Human and Ecological Risk Assessment: An International Journal, 23(2), 276–298. https://doi.org/10.1080/10807039.2016.1245099
  • Zhang, W., Wu, J., & Yun, Y. (2019). Strategies for increasing tsunami shelter accessibility to enhance hazard risk adaptive capacity in coastal port cities: A study of Nagoya city, Japan. Natural Hazards and Earth System Sciences, 19(4), 927–940. https://doi.org/10.5194/nhess-19-927-2019
  • Zhang, D., Shi, X., Xu, H., Jing, Q., Pan, X., Liu, T., ... & Hou, H. (2020). A GIS-based spatial multi-index model for flood risk assessment in the Yangtze River Basin, China. Environmental Impact Assessment Review, 83, 106397. https://doi.org/10.1016/j.eiar.2020.106397
  • Zhao, M., & Liu, X. (2016). Regional risk assessment for urban major hazards based on GIS geoprocessing to improve public safety. Safety Science, 87, 18-24. https://doi.org/10.1016/j.ssci.2016.03.016

A GIS-Based Risk Assessment Approach for Evaluating Shelters in Crisis Areas: Case of Idleb/Syria

Yıl 2021, Sayı: 31, 837 - 851, 31.12.2021
https://doi.org/10.31590/ejosat.1007768

Öz

Millions of people escaped the country, and numerous individuals were displaced since the crisis in Syria started on March 15, 2011. Particularly, internally displaced persons confront troubles in the sense of shelter and housing requirements. The aim of this paper is to propose a new approach for risk assessment in selecting shelters at humanitarian context in crisis areas by employing real data from the region. We included conducting risk assessment in crisis areas, identifying the risks/criteria using the Delphi technique, prioritizing risks using Interval Type-2 Fuzzy Analytic Hierarchy Process (IT2F-AHP), and finally selecting the shelters with lower risk values. For this purpose, we created risk maps for each individual risk/criterion by employing the Geographic Information System (GIS) and merged the risks’ maps into a single final risk map by overlaying them utilizing the weights produced from F-AHP to discover the complete risk value for each area in the study region. Lastly, we extracted and ranked the final risk values for the shelters to enable the decision maker to consider the lower-risk value shelters, as it can aid in expediting and facilitating the housing solutions at times of disasters and crisis.

Kaynakça

  • Abdalla, R., Tao, C. V., Wu, H., & Maqsood, I. (2006). A GIS-supported 3D approach for flood risk assessment of the Qu'Appelle River, Southern Saskatchewan. International Journal of Risk Assessment and Management, 6(4-6), 440-455. https://doi.org/10.1504/IJRAM.2006.009545
  • Abdalla, R., Elawad, Y., Chen, Z., Han, S. S., & Xia, R. (2014). A GIS-supported fuzzy-set approach for flood risk assessment. Canadian Water Resources Journal/Revue canadienne des ressources hydriques, 39(1), 3-14. https://doi.org/10.1080/07011784.2014.881058
  • Ak, R., Bahrami, M., & Bozkaya, B. (2020). A time-based model and GIS framework for assessing hazardous materials transportation risk in urban areas. Journal of Transport & Health, 19, 100943. https://doi.org/10.1016/j.jth.2020.100943
  • Al-Awadhi, T., Charabi, Y., Choudri, B. S., & Bani Oraba, Y. (2018). Flooding risk analysis: A case study of Muscat Governorate, Sultanate of Oman. Human and Ecological Risk Assessment: An International Journal, 24(3), 667-678. https://doi.org/10.1080/10807039.2017.1396441
  • Alcorn, R., Panter, K. S., & Gorsevski, P. V. (2013). A GIS-based volcanic hazard and risk assessment of eruptions sourced within Valles Caldera, New Mexico. Journal of volcanology and geothermal research, 267, 1-14. https://doi.org/10.1016/j.jvolgeores.2013.09.005
  • Aye, Z. C., Jaboyedoff, M., Derron, M. H., Van Westen, C. J., Hussin, H. Y., Ciurean, R. L., ... & Pasuto, A. (2016). An interactive web-GIS tool for risk analysis: a case study in the Fella River basin, Italy. Natural Hazards and Earth System Sciences, 16(1), 85-101. https://doi.org/10.5194/nhess-16-85-2016
  • Benguerai, A., Benabdeli, K., & Harizia, A. (2019). Forest Fire Risk Assessment Model Using Remote Sensing and GIS Techniques in Northwest Algeria. Acta Silvatica et Lignaria Hungarica: An International Journal in Forest, Wood and Environmental Sciences, 15(1), 9-21. https://doi.org/10.2478/aslh-2019-0001
  • Beni, L. H., Villeneuve, S., LeBlanc, D. I., Côté, K., Fazil, A., Otten, A., ... & Delaquis, P. (2012). Spatio-temporal assessment of food safety risks in Canadian food distribution systems using GIS. Spatial and Spatio-temporal Epidemiology, 3(3), 215-223. https://doi.org/10.1016/j.sste.2012.02.009
  • Bilak, A., Caterina, M., Charron, G., Crozet, S., Diaz-Leal, L. R., Foster, F., Ginnetti, J., Giorgi, J., Glatz, A. K, Guyon, K., Howard, C., Kesmaecker-Wissing, M., Kilany., S., Klos, J., Kok, F., Mccallin, B., Pagot, A., Rushing, E., Spurrel, C., Swain,
  • M., Turner, W., Walicki. N., & Yonetani, M. (2015). Global Overview 2015: People Internally Displaced by Conflict and Violence’ Internal Displacement Monitoring Centre, Norwegian Refugee Council: Geneva.
  • Burnley, C., Buda, D., & Kayitakire, F. (2008). Quantitative global model for armed conflict risk assessment. European Commission Joint Research Centre Institute for the Protection and Security of the Citizen Contact. https://doi.org/10.2788/83693
  • Cai, T., Li, X., Ding, X., Wang, J., & Zhan, J. (2019). Flood risk assessment based on hydrodynamic model and fuzzy comprehensive evaluation with GIS technique. International Journal of Disaster Risk Reduction, 35, 101077. https://doi.org/10.1016/j.ijdrr.2019.101077
  • Chen, W., Zhai, G., Fan, C., Jin, W., & Xie, Y. (2017). A planning framework based on system theory and GIS for urban emergency shelter system: A case of Guangzhou, China. Human and Ecological Risk Assessment: An International Journal, 23(3), 441–456. https://doi.org/10.1080/10807039.2016.1185692
  • Chen, W., Zhai, G., Ren, C., Shi, Y., & Zhang, J. (2018). Urban resources selection and allocation for emergency shelters: In a multi-hazard environment. International Journal of Environmental Research and Public Health, 15(6), 1261. https://doi.org/10.3390/ijerph15061261
  • Çankaya, Z. C., Süzen, M. L., Yalçıner, A. C., Kolat, C., Zaytsev, A., & Aytore, B. (2016). A new GIS- based tsunami risk evaluation: MeTHuVA (METU tsunami human vulnerability assessment) at Yenikapı, Istanbul. Earth, Planets and Space, 68(1), 133. https://doi.org/10.1186/s40623-016-0507-0
  • Çeliker, M., Yildiz, O., & Koçer, N. N. (2019). Evaluating solid waste landfill site selection using multi-criteria decision analysis and geographic information systems in the city of Elazığ, Turkey. Pamukkale University Journal of Engineering Sciences, 25(6), 683-691. https://doi.org/10.5505/pajes.2018.70493
  • Eccles, K. M., Pauli, B. D., & Chan, H. M. (2019). The Use of Geographic Information Systems for Spatial Ecological Risk Assessments: An Example from the Athabasca Oil Sands Area in Canada. Environmental Toxicology and Chemistry, 38(12), 2797-2810. https://doi.org/10.1002/etc.4577
  • Fedeski, M., & Gwilliam, J. (2007). Urban sustainability in the presence of flood and geological hazards: The development of a GIS-based vulnerability and risk assessment methodology. Landscape and Urban Planning, 83(1), 50-61 https://doi.org/10.1016/j.landurbplan.2007.05.012
  • Gallego, A., Calafat, C., Segura, M., & Quintanilla, I. (2019). Land planning and risk assessment for livestock production based on an outranking approach and GIS. Land Use Policy, 83, 606-621. https://doi.org/10.1016/j.landusepol.2018.10.02
  • Gao, C., Gao, C., Song, K., Ye, Z., & Dong, J. (2019). Regional water ecosystem risk assessment based on GIS and pollutant diffusion model: A case study of Shenzhen eco-industrial park. Process Safety and Environmental Protection, 130, 182-189. https://doi.org/10.1016/j.psep.2019.08.004
  • Hadipour, V., Vafaie, F., & Deilami, K. (2020). Coastal Flooding Risk Assessment Using a GIS-Based Spatial Multi-Criteria Decision Analysis Approach. Water, 12(9), 2379. https://doi.org/10.3390/w12092379
  • Hawchar, L., Naughton, O., Nolan, P., Stewart, M. G., & Ryan, P. C. (2020). A GIS-based Framework for High-Level Climate Change Risk Assessment of Critical Infrastructure. Climate Risk Management, 100235. https://doi.org/10.1016/j.crm.2020.100235
  • Heudtlass, P., Speybroeck, N., & Guha-Sapir, D. (2016). Excess mortality in refugees, internally displaced persons and resident populations in complex humanitarian emergencies (1998–2012)–insights from operational data. Conflict and health, 10(1), 1-11. https://doi.org/10.1186/s13031-016-0082-9
  • Huabin, W., Gangjun, L., Weiya, X., & Gonghui, W. (2005). GIS-based landslide hazard assessment: an overview. Progress in Physical Geography, 29(4), 548-567. https://doi.org/10.1191/0309133305pp462ra
  • INEE Toolkit - Welcome. (n.d.). Retrieved March 22, 2020, from https://toolkit.ineesite.org/
  • Isahak, A., Reza, M. I. H., Siwar, C., Ismail, S. M., Sulaiman, N., Hanafi, Z., Zainuddin, M. S., & Taha, M. R. (2018). Delineating risk zones and evaluation of shelter centres for flood disaster management along the Pahang River Basin, Malaysia. Jàmbá: Journal of Disaster Risk Studies, 10(1), 1–7. https://doi.org/10.4102/jamba.v10i1.501
  • Kahraman, C., Öztayşi, B., Sarı, İ. U., & Turanoğlu, E. (2014). Fuzzy Analytic Hierarchy Process with Interval Type-2 Fuzzy Sets. Knowledge-Based Systems, 59, 48-57. https://doi.org/10.1016/j.knosys.2014.02.001
  • Karimi, H., Amiri, S., Huang, J., & Karimi, A. (2019). Integrating GIS and multi-criteria decision analysis for landfill site selection, case study: Javanrood County in Iran. International Journal of Environmental Science and Technology, 16, 7305. https://doi.org/10.1007/s13762-018-2151-7
  • Lyu, H. M., Sun, W. J., Shen, S. L., & Arulrajah, A. (2018). Flood risk assessment in metro systems of mega-cities using a GIS-based modeling approach. Science of the Total Environment, 626, 1012- 1025. https://doi.org/10.1016/j.scitotenv.2018.01.138
  • Mock, N. B., Duale, S., Brown, L. F., Mathys, E., O’Maonaigh, H. C., Abul-Husn, N. K. L., & Elliott, S. (2004). Conflict and HIV: A framework for risk assessment to prevent HIV in conflict-affected settings in Africa. Emerging Themes in Epidemiology, 1, 1–16. https://doi.org/10.1186/1742-7622-1-6
  • Öztaysi, B. (2015). A group decision making approach using interval type-2 fuzzy AHP for enterprise information systems project selection. Multiple-Valued Logic and Soft Computing 24: 475-500.
  • Pence, J., Miller, I., Sakurahara, T., Whitacre, J., Reihani, S., Kee, E., & Mohaghegh, Z. (2019). GIS-Based Integration of Social Vulnerability and Level 3 Probabilistic Risk Assessment to Advance Emergency Preparedness, Planning, and Response for Severe Nuclear Power Plant Accidents. Risk Analysis, 39(6), 1262–1280. https://doi.org/10.1111/risa.13241
  • Psomiadis, E., Charizopoulos, N., Efthimiou, N., Soulis, K. X., & Charalampopoulos, I. (2020). Earth Observation and GIS-Based Analysis for Landslide Susceptibility and Risk Assessment. ISPRS International Journal of Geo-Information, 9(9), 552. https://doi.org/10.3390/ijgi9090552
  • Repetto, M. P., Burlando, M., Solari, G., De Gaetano, P., Pizzo, M., & Tizzi, M. (2018). A web-based GIS platform for the safe management and risk assessment of complex structural and infrastructural systems exposed to wind. Advances in Engineering Software, 117, 29-45. https://doi.org/10.1016/j.advengsoft.2017.03.002
  • Rincón, D., Khan, U. T., & Armenakis, C. (2018). Flood risk mapping using GIS and multi-criteria analysis: A greater Toronto area case study. Geosciences (Switzerland), 8, 275. https://doi.org/10.3390/geosciences8080275
  • Sahoo, B., & Bhaskaran, P. K. (2018). Multi-hazard risk assessment of coastal vulnerability from tropical cyclones–A GIS based approach for the Odisha coast. Journal of Environmental Management, 206, 1166-1178. https://doi.org/10.1016/j.jenvman.2017.10.075
  • Sarkar, S., Parihar, S. M., & Dutta, A. (2016). Fuzzy risk assessment modelling of East Kolkata Wetland Area: A remote sensing and GIS based approach. Environmental Modelling & Software, 75, 105- 118. https://doi.org/10.1016/j.envsoft.2015.10.003
  • Shalyari, N., Alinejad, A., Hashemi, A. H. G., RadFard, M., & Dehghani, M. (2019). Health risk assessment of nitrate in groundwater resources of Iranshahr using Monte Carlo simulation and geographic information system (GIS). MethodsX, 6, 1812-1821. https://doi.org/10.1016/j.mex.2019.07.024
  • Skilodimou, H. D., Bathrellos, G. D., Chousianitis, K., Youssef, A. M., & Pradhan, B. (2019). Multi-hazard assessment modeling via multi-criteria analysis and GIS: a case study. Environmental Earth Sciences, 78(2), 47. https://doi.org/10.1007/s12665-018-8003-4
  • Şentürk, E., & Erener, A. (2017). Determination of temporary shelter areas in natural disasters by gis: A case study, Gölcük/Turkey. International Journal of Engineering and Geosciences, 2(3), 84-90. https://doi.org/10.26833/ijeg.317314
  • Török, Z., Petrescu-Mag, R. M., Mereuță, A., Maloș, C. V., Arghiuș, V. I., & Ozunu, A. (2020). Analysis of territorial compatibility for Seveso-type sites using different risk assessment methods and GIS technique. Land Use Policy, 95, 103878. https://doi.org/10.1016/j.landusepol.2019.02.037
  • Uddin, K., Raj, Gurung D., Giriraj, A., & Shrestha, B. (2013). Application of remote sensing and GIS for flood hazard management: A case study from Sindh Province, Pakistan. American Journal of Geographic Information System, 1, 1–5.
  • UNHCR (2019) UNHCR - Internally Displaced People. Retrieved March 22, 2020, from https://www.unhcr.org/pages/49c3646c146.html
  • Wang, Y., Li, Z., Tang, Z., & Zeng, G. (2011). A GIS-based spatial multi-criteria approach for flood risk assessment in the Dongting Lake Region, Hunan, Central China. Water Resources Management, 25(13), 3465-3484. https://doi.org/10.1007/s11269-011-9866-2
  • Yariyan, P., Zabihi, H., Wolf, I. D., Karami, M., & Amiriyan, S. (2020). Earthquake risk assessment using an integrated Fuzzy Analytic Hierarchy Process with Artificial Neural Networks based on GIS: A case study of Sanandaj in Iran. International Journal of Disaster Risk Reduction, 50, 101705. https://doi.org/10.1016/j.ijdrr.2020.101705
  • Yu, J. H., & Lee, S. K. (2012). A conflict-risk assessment model for urban regeneration projects using Fuzzy-FMEA. KSCE Journal of Civil Engineering, 16(7), 1093–1103. https://doi.org/10.1007/s12205-012-1196-2
  • Zhang, J., Zhai, Y., Xue, P., Huan, H., Zhao, X., Teng, Y., & Wang, J. (2017). A GIS-based LVF model for semiquantitative assessment of groundwater pollution risk: A case study in Shenyang, NE China. Human and Ecological Risk Assessment: An International Journal, 23(2), 276–298. https://doi.org/10.1080/10807039.2016.1245099
  • Zhang, W., Wu, J., & Yun, Y. (2019). Strategies for increasing tsunami shelter accessibility to enhance hazard risk adaptive capacity in coastal port cities: A study of Nagoya city, Japan. Natural Hazards and Earth System Sciences, 19(4), 927–940. https://doi.org/10.5194/nhess-19-927-2019
  • Zhang, D., Shi, X., Xu, H., Jing, Q., Pan, X., Liu, T., ... & Hou, H. (2020). A GIS-based spatial multi-index model for flood risk assessment in the Yangtze River Basin, China. Environmental Impact Assessment Review, 83, 106397. https://doi.org/10.1016/j.eiar.2020.106397
  • Zhao, M., & Liu, X. (2016). Regional risk assessment for urban major hazards based on GIS geoprocessing to improve public safety. Safety Science, 87, 18-24. https://doi.org/10.1016/j.ssci.2016.03.016
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Jamil Hallak 0000-0001-5975-4075

Melik Koyuncu 0000-0003-0513-6276

Pınar Miç 0000-0002-9655-0319

Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 31

Kaynak Göster

APA Hallak, J., Koyuncu, M., & Miç, P. (2021). A GIS-Based Risk Assessment Approach for Evaluating Shelters in Crisis Areas: Case of Idleb/Syria. Avrupa Bilim Ve Teknoloji Dergisi(31), 837-851. https://doi.org/10.31590/ejosat.1007768