Araştırma Makalesi
BibTex RIS Kaynak Göster

Polimerik Çekirdek Malzemeler ile Üretilen Havacılık Sandviç Kompozitlerinin ANSYS ile Basma ve Üç Nokta Eğme Analizleri

Yıl 2021, Sayı: 31, 553 - 561, 31.12.2021
https://doi.org/10.31590/ejosat.1012658

Öz

Bal peteği yapılar hava aracı malzemelerinde oldukça yaygın kullanım alanı bulmaktadır. Ancak bu yapılar boylamasına basma kuvvetlerinde dezavantajlara sahiptirler. Hava aracı yapılarında kullanılan sandviç kompozitlerde genellikle yüzey malzemesi olarak alüminyum kullanılırken çekirdek malzemesi olarak tasarıma göre değişmekle birlikte Nomex petek ya da alüminyum petek yapılar kullanılmaktadır. Çekirdek ve yüzey tabakası arasındaki azaltılmış arayüz alanı, uygulanan bir yük altında iken yüzey ile çekirdeğin ayrılma olasılığını da arttırmaktadır. Bu çalışmada bal peteği çekirdekli yapıların bu dezavantajlarını ortadan kaldırmak veya en aza indirgemek için potansiyel bir malzeme olarak polimerik köpük – bal peteği yapı kombinasyonuna dikkat çekilmektedir. Bu çalışmada karbon fiber yüzeylere sahip içi poliüretan köpük dolgulu PLA (polylactic acid) bal peteği çekirdekli sandviç kompozit ANSYS'te basma ve üç nokta eğme testlerine tabii tutulmuştur. Elde edilen sonuçlar bu yeni malzemenin havacılık yapılarında kullanılabileceğini göstermektedir.

Kaynakça

  • Bouvet, C. (2017). Mechanics of Aeronautical Composite Materials. John Wiley & Sons
  • Caglayan, C., Gurkan, I., Gungor, S., & Cebeci, H. (2018). The effect of CNT-reinforced polyurethane foam cores to flexural properties of sandwich composites. Composites Part A: Applied Science and Manufacturing, 115, 187-195.
  • Callister, W. D., & Rethwisch, D. G. (2011). Materials science and engineering (2010). John Wiley & Sons.
  • Evonik Industries. (2019, July 15). Polymethacrylimide Foam for Damage Tolerant Structures for Better Damage Visibility in Aerospace Components. https://www.azom.com/article.aspx?ArticleID=10501
  • Herrmann, A. S., Zahlen, P. C., & Zuardy, I. (2005). Sandwich structures technology in commercial aviation. In Sandwich structures 7: Advancing with sandwich structures and materials (pp. 13-26). Springer, Dordrecht.
  • Jayaram, R. S., Nagarajan, V. A., & Vinod Kumar, K. P. (2019). Compression and low velocity impact response of sandwich panels with polyester pin-reinforced foam filled honeycomb core. Journal of Sandwich Structures & Materials, 21(6), 2014-2030.
  • Lee, L. J., Zeng, C., Cao, X., Han, X., Shen, J., & Xu, G. (2005). Polymer nanocomposite foams. Composites science and technology, 65(15-16), 2344 – 2363.
  • Liu, J., Chen, W., Hao, H., & Wang, Z. (2019). Numerical study of low-speed impact response of sandwich panel with tube filled honeycomb core. Composite Structures, 220, 736-748.
  • Rahman M.M., Rabbani M.M., Saha J.K. (2019) Polyurethane and Its Derivatives. In: Jafar Mazumder M., Sheardown H., Al-Ahmed A. (eds) Functional Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham.
  • Toozandehjani, M., Kamarudin, N., Dashtizadeh, Z., Lim, E. Y., Gomes, A., & Gomes, C. (2018). Conventional and advanced composites in aerospace industry: technologies revisited. Am. J. Aerosp. Eng, 5, 9-15.
  • Xiong, J., Du, Y., Mousanezhad, D., Eydani Asl, M., Norato, J., & Vaziri, A. (2019). Sandwich Structures with Prismatic and Foam Cores: A Review. Advanced Engineering Materials, 21(1), 1800036.
  • Zhang, Q., Yang, X., Li, P., Huang, G., Feng, S., Shen, C., ... & Lu, T. J. (2015). Bioinspired engineering of honeycomb structure–Using nature to inspire human innovation. Progress in Materials Science, 74, 332-400.

Compression and Three-Point Bending Analyzes of Aerospace Sandwich Composites produced with Polymeric Core Materials with ANSYS

Yıl 2021, Sayı: 31, 553 - 561, 31.12.2021
https://doi.org/10.31590/ejosat.1012658

Öz

Honeycomb materials are widely used in aircraft structures. However, these structures have disadvantages in longitudinal compression forces. While aluminum is generally used as the face material in sandwich composites used in aircraft structures, Nomex honeycomb or aluminum honeycomb structures are used as the core material, depending on the design. The reduced interface area between the core and the surface layer also increases the probability of separation of the surface and core under an applied load. In this study, attention is drawn to the combination of polymeric foam - honeycomb structure as a potential material to eliminate or minimize these disadvantages of honeycomb core structures. In this study, polyurethane foam filled PLA (polylactic acid) honeycomb core sandwich composite with carbon fiber faces was subjected to compression and three-point bending tests in ANSYS. The results obtained show that this new material can be used in aerospace materials.

Kaynakça

  • Bouvet, C. (2017). Mechanics of Aeronautical Composite Materials. John Wiley & Sons
  • Caglayan, C., Gurkan, I., Gungor, S., & Cebeci, H. (2018). The effect of CNT-reinforced polyurethane foam cores to flexural properties of sandwich composites. Composites Part A: Applied Science and Manufacturing, 115, 187-195.
  • Callister, W. D., & Rethwisch, D. G. (2011). Materials science and engineering (2010). John Wiley & Sons.
  • Evonik Industries. (2019, July 15). Polymethacrylimide Foam for Damage Tolerant Structures for Better Damage Visibility in Aerospace Components. https://www.azom.com/article.aspx?ArticleID=10501
  • Herrmann, A. S., Zahlen, P. C., & Zuardy, I. (2005). Sandwich structures technology in commercial aviation. In Sandwich structures 7: Advancing with sandwich structures and materials (pp. 13-26). Springer, Dordrecht.
  • Jayaram, R. S., Nagarajan, V. A., & Vinod Kumar, K. P. (2019). Compression and low velocity impact response of sandwich panels with polyester pin-reinforced foam filled honeycomb core. Journal of Sandwich Structures & Materials, 21(6), 2014-2030.
  • Lee, L. J., Zeng, C., Cao, X., Han, X., Shen, J., & Xu, G. (2005). Polymer nanocomposite foams. Composites science and technology, 65(15-16), 2344 – 2363.
  • Liu, J., Chen, W., Hao, H., & Wang, Z. (2019). Numerical study of low-speed impact response of sandwich panel with tube filled honeycomb core. Composite Structures, 220, 736-748.
  • Rahman M.M., Rabbani M.M., Saha J.K. (2019) Polyurethane and Its Derivatives. In: Jafar Mazumder M., Sheardown H., Al-Ahmed A. (eds) Functional Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham.
  • Toozandehjani, M., Kamarudin, N., Dashtizadeh, Z., Lim, E. Y., Gomes, A., & Gomes, C. (2018). Conventional and advanced composites in aerospace industry: technologies revisited. Am. J. Aerosp. Eng, 5, 9-15.
  • Xiong, J., Du, Y., Mousanezhad, D., Eydani Asl, M., Norato, J., & Vaziri, A. (2019). Sandwich Structures with Prismatic and Foam Cores: A Review. Advanced Engineering Materials, 21(1), 1800036.
  • Zhang, Q., Yang, X., Li, P., Huang, G., Feng, S., Shen, C., ... & Lu, T. J. (2015). Bioinspired engineering of honeycomb structure–Using nature to inspire human innovation. Progress in Materials Science, 74, 332-400.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Erdem Tunca 0000-0003-3488-8282

Haşim Kafalı 0000-0002-7740-202X

Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 31

Kaynak Göster

APA Tunca, E., & Kafalı, H. (2021). Compression and Three-Point Bending Analyzes of Aerospace Sandwich Composites produced with Polymeric Core Materials with ANSYS. Avrupa Bilim Ve Teknoloji Dergisi(31), 553-561. https://doi.org/10.31590/ejosat.1012658