Araştırma Makalesi
BibTex RIS Kaynak Göster

Anod Çamurundaki Bakırın H2SO4 Çözeltilerinde Çözündürülmesi Esnasında Nikelin Davranışı

Yıl 2022, Sayı: 34, 469 - 473, 31.03.2022
https://doi.org/10.31590/ejosat.1082920

Öz

Bu çalışmanın amacı, Taguchi yöntemi ile ham anod çamurundaki bakırın oksijenli/oksijensiz ortamında H2SO4 çözeltilerinde liç edilmesi esnasında nikelin liçingi ve optimizasyonunu incelemektir. Sonuçların değerlendirilmesinde Taguchi deneysel tasarımı kullanılmış olup deney planı olarak L18(21*37) ortogonal dizisi belirlenmiştir. Son zamanlarda sıkça kullanılmakta olan Taguchi yönteminin geleneksel deneysel tasarım yöntemlerine göre bazı önemli avantajları vardır. Ön denemeler ışığı altında; reaksiyon sıcaklığı, karıştırma hızı, kavurma sıcaklığı, asit konsantrasyonu gibi bir takım parametreler seçilmiştir. Nikelin liçingine yönelik belirlenen parametreler ve optimum şartları şöyledir: pedal sayısı 2, reaksiyon sıcaklığı 70 °C, O2 debisi 5,03×10−6 m3s-1, karıştırma hızı 450 dak-1, asit konsantrasyonu % 10,86 (w/w), katı-sıvı oranı 0,20 g.mL-1, reaksiyon süresi 3600 s ve kavurma sıcaklığı 600 °C. Deneysel sonuçlar, optimum liç koşulları altında nikel ekstraksiyonunun % 80,0 olduğunu göstermiştir.

Kaynakça

  • Amer, A. M., (2003). “Processing of copper anodic-slimes for extraction of valuable metals.” Waste Management, 23, 763–770.
  • Baboudjian, V. P., Morrison, B. H. and Stafiej, J S., (1992). "Treatment of high nickel slimes," U.S. Patent 5 108 721, Apr. 28,
  • Ding, Y., Zhang, S., Liu, B., Zheng, H., Chang, C. C., and Ekberg, C., (2019). “Recovery of precious metals from electronic waste and spent catalysts: A review,” Resources, Conservation and Recycling, 141, 284-298.
  • Dönmez, B., Çelik, C., Çolak, S., and Yartaşi, A., (1998). “Dissolution optimization of copper from anode slime in H2SO4 solutions”, Industrial & Engineering Chemistry Research, 37, 3382-3387.
  • Dönmez*, B., Ekinci, Z., Celik, C., and Çolak, S., (1999). “Optimisation of the chlorination of gold in decopperized anode slime in aqueous medium”, Hydrometallurgy, 52, 81-90.
  • Guo, X., Xu, Z., Tian, Q., and Li, D., (2017). “Optimization on Selenium and Arsenic Conversion from Copper Anode Slime by Low-Temperature Alkali Fusion Process”, J Cent South Univ, 24, 1537–1543.
  • Gündoğdu, C. C., Gündüz, T. and Atıcı U. H., (2021). “Taguchı Yöntemi İle Polimer Hammadde Karışım Optimizasyonu. Journal of Industrial Engineering”, Journal of Industrial Engineering, 32, 164-176.
  • Li, X., Yang, H., Jin, Z., Tong, L. and Xiao, F., (2017). “Selenium Leaching from Copper Anode Slimes Using a Nitric Acid–Sulfuric Acid Mixture”, Metallurgist, 61, 348–356.
  • Liu, J., Wang, S., Liu, C., Zhang, L., and Kong, D., (2021). “Decopperization mechanism of copper anode slime enhanced by ozone”, Journal of Materials Research and Technology, 15, 531-541.
  • Kackar, R.N., (1985). Off-line quality control, parameter design and Taguchi methods, Journal of Quality Technology. Phadke, M.S., Kackar, R.N., Speeney, D.V. and Grieco, M.J. (1983). “Off-line quality control in integrated circuit fabrication using experimental design”, The Bell System Technical J., 62, 1273-1309.
  • Qiu, K., Lin, D. and Yang, X., (2012). “Vacuum evaporation technology for treating antimony-rich anode slime.”, JOM, 64, 1321–1325.
  • Ross, P.J. (1988). Taguchi Techniques for Quality Engineering, McGraw-Hill, New York.
  • Rüşen, A. and Topcu, M. A., (2017). “Optimization of Gold Recovery from Copper Anode Slime by Acidic Ionic Liquid”, Korean J Chem. Eng., 34, 2958–2965.
  • Rüşen, A. and Topcu, M. A., (2018). “Investigation of an Alternative Chemical Agent to Recover Valuable Metals from Anode Slime” Chem Pap, 72, 2879–2891.
  • Seisko, S, Aromaa, J., Latostenmaa, P., Forsen, O. and Lundstrom, M. (2017)."Effect of process variables on oxidative pressurized acid leaching of copper electrorefining anode slimes", Physicochem Probl Min Pr, 53, 465-474.
  • Taguchi, G., (1987). System of Experimental Design, Quality Resources, New York.
  • Tan, K. G. and Bedard, P. L. (1989). “Ammonia leach process for the treatment of copper refinery anode slimes containing high lead and low nickel”, Canadian Metallurgical Quarterly, 28, 199-210.
  • Tokkan, D., Kuşlu, S., Çalban, T. and Çolak, S., (2013). “Optimization of Silver Removal from Anode Slime by Microwave Irradiation in Ammonium Thiosulfate Solutions”, Ind Eng Chem Res, 52, 9719–9725.
  • Topçu, M. A., Kalem, V. and Rüşen, A., (2021). “Processing of anode slime with deep eutectic solvents as a green leachant”, Hydrometallurgy, 205, 105732.
  • Wang, S., Cui, W., Zhang, G., Zhang, L. and Peng, J., (2017). “Ultrafast Ultrasound-Assisted Decopperization from Copper Anode Slime”, Ultrason Sonochem, 36, 20–26.
  • Yakut, K., Alemdaroglu, N., Kotcioglu, I. and Celik, C., (2006). “Experimental investigation of thermal resistance of a heat sink with hexagonal fins”, Applied Thermal Engineering, 26(17-18), 2262-2271.
  • Yang, H., Li, X., Tong, L., Jin, Z., Yin, L.and Chen, G., (2018). “Leaching Kinetics of Selenium from Copper Anode Slimes by Nitric Acid Sulfuric Acid mixture”, Trans Nonferrous Met Soc China, 28, 186–192.
  • Zhang, B. K, Guo, X. Y., Wang, Q. M. and Tian, Q. H., (2021). “Thermodynamic analysis and process optimization of zinc and lead recovery from copper smelting slag with chlorination roasting”, Transactions of Nonferrous Metals Society of China, 31, 3905-3917. [25] G. Taguchi, System of Experimental Design, Quality Resources, New York, 1987.

Behavior of Nickel During Dissolution of Copper in Anode Slime in H2SO4 Solutions

Yıl 2022, Sayı: 34, 469 - 473, 31.03.2022
https://doi.org/10.31590/ejosat.1082920

Öz

The aim of this study is to investigate the leaching and optimization of nickel during the leaching of copper in the raw anode slie in H2SO4 solutions in an oxygenated/oxygen-free medium with the Taguchi method. Taguchi experimental design was used in the evaluation of the results and the L18(21*37) orthogonal array was determined as the experimental plan. The Taguchi method, which has been used frequently recently, has some important advantages over traditional experimental design methods. Under the light of preliminary tests; Some parameters such as reaction temperature, stirring speed, roasting temperature, acid concentration were selected. The parameters and optimum conditions for nickel leaching are as follows: number of pedals 2, reaction temperature 70 °C, O2 flow rate 5.03×10−6 m3s-1, stirring speed 450 min-1, acid concentration 10.86 % (w/w ), solid-liquid ratio 0.20 g.mL-1, reaction time 3600 s and roasting temperature 600 °C. Experimental results showed that nickel extraction was 80.0 % under optimum leaching conditions.

Kaynakça

  • Amer, A. M., (2003). “Processing of copper anodic-slimes for extraction of valuable metals.” Waste Management, 23, 763–770.
  • Baboudjian, V. P., Morrison, B. H. and Stafiej, J S., (1992). "Treatment of high nickel slimes," U.S. Patent 5 108 721, Apr. 28,
  • Ding, Y., Zhang, S., Liu, B., Zheng, H., Chang, C. C., and Ekberg, C., (2019). “Recovery of precious metals from electronic waste and spent catalysts: A review,” Resources, Conservation and Recycling, 141, 284-298.
  • Dönmez, B., Çelik, C., Çolak, S., and Yartaşi, A., (1998). “Dissolution optimization of copper from anode slime in H2SO4 solutions”, Industrial & Engineering Chemistry Research, 37, 3382-3387.
  • Dönmez*, B., Ekinci, Z., Celik, C., and Çolak, S., (1999). “Optimisation of the chlorination of gold in decopperized anode slime in aqueous medium”, Hydrometallurgy, 52, 81-90.
  • Guo, X., Xu, Z., Tian, Q., and Li, D., (2017). “Optimization on Selenium and Arsenic Conversion from Copper Anode Slime by Low-Temperature Alkali Fusion Process”, J Cent South Univ, 24, 1537–1543.
  • Gündoğdu, C. C., Gündüz, T. and Atıcı U. H., (2021). “Taguchı Yöntemi İle Polimer Hammadde Karışım Optimizasyonu. Journal of Industrial Engineering”, Journal of Industrial Engineering, 32, 164-176.
  • Li, X., Yang, H., Jin, Z., Tong, L. and Xiao, F., (2017). “Selenium Leaching from Copper Anode Slimes Using a Nitric Acid–Sulfuric Acid Mixture”, Metallurgist, 61, 348–356.
  • Liu, J., Wang, S., Liu, C., Zhang, L., and Kong, D., (2021). “Decopperization mechanism of copper anode slime enhanced by ozone”, Journal of Materials Research and Technology, 15, 531-541.
  • Kackar, R.N., (1985). Off-line quality control, parameter design and Taguchi methods, Journal of Quality Technology. Phadke, M.S., Kackar, R.N., Speeney, D.V. and Grieco, M.J. (1983). “Off-line quality control in integrated circuit fabrication using experimental design”, The Bell System Technical J., 62, 1273-1309.
  • Qiu, K., Lin, D. and Yang, X., (2012). “Vacuum evaporation technology for treating antimony-rich anode slime.”, JOM, 64, 1321–1325.
  • Ross, P.J. (1988). Taguchi Techniques for Quality Engineering, McGraw-Hill, New York.
  • Rüşen, A. and Topcu, M. A., (2017). “Optimization of Gold Recovery from Copper Anode Slime by Acidic Ionic Liquid”, Korean J Chem. Eng., 34, 2958–2965.
  • Rüşen, A. and Topcu, M. A., (2018). “Investigation of an Alternative Chemical Agent to Recover Valuable Metals from Anode Slime” Chem Pap, 72, 2879–2891.
  • Seisko, S, Aromaa, J., Latostenmaa, P., Forsen, O. and Lundstrom, M. (2017)."Effect of process variables on oxidative pressurized acid leaching of copper electrorefining anode slimes", Physicochem Probl Min Pr, 53, 465-474.
  • Taguchi, G., (1987). System of Experimental Design, Quality Resources, New York.
  • Tan, K. G. and Bedard, P. L. (1989). “Ammonia leach process for the treatment of copper refinery anode slimes containing high lead and low nickel”, Canadian Metallurgical Quarterly, 28, 199-210.
  • Tokkan, D., Kuşlu, S., Çalban, T. and Çolak, S., (2013). “Optimization of Silver Removal from Anode Slime by Microwave Irradiation in Ammonium Thiosulfate Solutions”, Ind Eng Chem Res, 52, 9719–9725.
  • Topçu, M. A., Kalem, V. and Rüşen, A., (2021). “Processing of anode slime with deep eutectic solvents as a green leachant”, Hydrometallurgy, 205, 105732.
  • Wang, S., Cui, W., Zhang, G., Zhang, L. and Peng, J., (2017). “Ultrafast Ultrasound-Assisted Decopperization from Copper Anode Slime”, Ultrason Sonochem, 36, 20–26.
  • Yakut, K., Alemdaroglu, N., Kotcioglu, I. and Celik, C., (2006). “Experimental investigation of thermal resistance of a heat sink with hexagonal fins”, Applied Thermal Engineering, 26(17-18), 2262-2271.
  • Yang, H., Li, X., Tong, L., Jin, Z., Yin, L.and Chen, G., (2018). “Leaching Kinetics of Selenium from Copper Anode Slimes by Nitric Acid Sulfuric Acid mixture”, Trans Nonferrous Met Soc China, 28, 186–192.
  • Zhang, B. K, Guo, X. Y., Wang, Q. M. and Tian, Q. H., (2021). “Thermodynamic analysis and process optimization of zinc and lead recovery from copper smelting slag with chlorination roasting”, Transactions of Nonferrous Metals Society of China, 31, 3905-3917. [25] G. Taguchi, System of Experimental Design, Quality Resources, New York, 1987.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Bünyamin Dönmez 0000-0002-7680-0755

Cafer Celik 0000-0002-7025-2647

Erken Görünüm Tarihi 30 Ocak 2022
Yayımlanma Tarihi 31 Mart 2022
Yayımlandığı Sayı Yıl 2022 Sayı: 34

Kaynak Göster

APA Dönmez, B., & Celik, C. (2022). Anod Çamurundaki Bakırın H2SO4 Çözeltilerinde Çözündürülmesi Esnasında Nikelin Davranışı. Avrupa Bilim Ve Teknoloji Dergisi(34), 469-473. https://doi.org/10.31590/ejosat.1082920