Araştırma Makalesi
BibTex RIS Kaynak Göster

4-Boyutta Epitrokhoidal Hiperyüzeyler

Yıl 2022, Sayı: 34, 769 - 772, 31.03.2022
https://doi.org/10.31590/ejosat.1085790

Öz

Dört boyutlu Öklid uzayı E^4’de epitrokhoidal hiperyüzeylere giriş yaptık. Öklid geometrisi E^4'ün notasyonlarını verdik. Dönel hiperyüzeyin bir tanımını vererek, epitrokhoidal hiperyüzeyi tanımladık ve Gauss tasviri ve eğrilikler gibi diferansiyel geometrik nesneleri hesapladık. Son olarak, bu tip hiperyüzeylerin eğrilikleri için bazı bağıntıları ortaya çıkardık.

Kaynakça

  • A.R. Forsyth, Lectures on the Differential Geometry of Curves and Surfaces. Cambridge Un. press, 2nd ed. 1920.
  • G. Ganchev, V. Milousheva, General rotational surfaces in the 4-dimensional Minkowski space. Turkish J. Math., 38 (2014), 883–895.
  • A. Gray, S. Salamon, E. Abbena, Modern Differential Geometry of Curves and Surfaces with Mathematica. Third ed. Chapman & Hall/CRC Press, Boca Raton, 2006.
  • E.Güler, Fundamental form IV and curvature formulas of the hypersphere. Malaya J. Mat. 8(4) (2020), 2008-2011
  • H.H. Hacısalihoglu, Diferensiyel Geometri I. Ankara Ün., Ankara, 1982.
  • H.H. Hacısalihoğlu, 2 ve 3 Boyutlu Uzaylarda Analitik Geometri. Ertem Basım, Ankara, 2013.
  • J.C.C. Nitsche, Lectures on Minimal Surfaces. Vol. 1, Introduction, Fundamentals, Geometry and Basic Boundary Value Problems. Cambridge, 1989.

Epitrochoidal Hypersurfaces in 4-Space

Yıl 2022, Sayı: 34, 769 - 772, 31.03.2022
https://doi.org/10.31590/ejosat.1085790

Öz

We introduce the epitrochoidal hypersurfaces in four dimensional Euclidean space E^4. We serve notations of a Euclidean geometry E^4. Giving a definition of the rotational hypersurface, we define the epitrochoidal hypersurface, and calculate its differential geometric objects, such as the Gauss map and the curvatures. In the end, we reveal some relations for the curvatures of that type hypersurfaces.

Kaynakça

  • A.R. Forsyth, Lectures on the Differential Geometry of Curves and Surfaces. Cambridge Un. press, 2nd ed. 1920.
  • G. Ganchev, V. Milousheva, General rotational surfaces in the 4-dimensional Minkowski space. Turkish J. Math., 38 (2014), 883–895.
  • A. Gray, S. Salamon, E. Abbena, Modern Differential Geometry of Curves and Surfaces with Mathematica. Third ed. Chapman & Hall/CRC Press, Boca Raton, 2006.
  • E.Güler, Fundamental form IV and curvature formulas of the hypersphere. Malaya J. Mat. 8(4) (2020), 2008-2011
  • H.H. Hacısalihoglu, Diferensiyel Geometri I. Ankara Ün., Ankara, 1982.
  • H.H. Hacısalihoğlu, 2 ve 3 Boyutlu Uzaylarda Analitik Geometri. Ertem Basım, Ankara, 2013.
  • J.C.C. Nitsche, Lectures on Minimal Surfaces. Vol. 1, Introduction, Fundamentals, Geometry and Basic Boundary Value Problems. Cambridge, 1989.
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Erhan Güler 0000-0003-3264-6239

Ömer Kişi 0000-0001-6844-3092

Erken Görünüm Tarihi 30 Ocak 2022
Yayımlanma Tarihi 31 Mart 2022
Yayımlandığı Sayı Yıl 2022 Sayı: 34

Kaynak Göster

APA Güler, E., & Kişi, Ö. (2022). Epitrochoidal Hypersurfaces in 4-Space. Avrupa Bilim Ve Teknoloji Dergisi(34), 769-772. https://doi.org/10.31590/ejosat.1085790