Araştırma Makalesi
BibTex RIS Kaynak Göster

Bulanık Mantık Yaklaşımı Kullanılarak Kızılırmak Nehri Aylık Ortalama Akımlarının Tahmini

Yıl 2023, Sayı: 51, 368 - 375, 31.08.2023
https://doi.org/10.31590/ejosat.1241399

Öz

Hidrolik yapılarının projelendirilmesi ve işletmesinde akarsu akım değerleri kullanılmaktadır. Doğru akım değerinin belirlenmesi, hidrolik yapıların işletilmesinde, tarım arazilerinin sulanması, hidroelektrik üretimi, çevre koruması ve taşkın kontrolü açılarından önemlidir. Literatürde eldeki veriler kullanılarak olması muhtemel nehir akımlarının tahmin edilmesi için farklı yöntemler kullanılmaktadır. Bulanık mantık yaklaşımı, belirsizlik içeren problemlerin çözümünde kullanılan bir tür akıllı sistem yöntemidir. Yöntem son yıllarda hidrolojik verilerin modellenmesinde yaygın olarak kullanılmaktadır. Bu çalışmada, bulanık mantık yöntemi, Türkiye’ nin en büyük havzalarından birisi olan Kızılırmak havzasındaki Kızılırmak Nehri üzerinde bulunan Yamula İstasyonuna ait akım verilerinin tahmin edilmesi için uygulanmıştır. Bu akım istasyonu verileri yanında, istasyona etki eden Kayseri meteoroloji istasyonuna ait aylık ortalama sıcaklık ve aylık toplam yağış verileri de modelleme için kullanılmıştır. Akım tahminleri için üç farklı model oluşturulmuştur. Bu modellerde girdi değeri olarak sıcaklık, yağış verileri, nehir akım değerleri ise çıktı olarak seçilmiştir. Modellerde, istasyonlara ait 1982-2012 verileri kullanılmıştır. Model çıktı verileri ve 2013, 2014 ve 2015 yıllarına ait veriler ile test edilmiştir. Sonuç olarak, bulanık mantık yönteminin hem sıcaklık hem de yağış verilerinin girdi olarak kullanıldığında sağlıklı sonuçlar verdiği görülmüştür.

Destekleyen Kurum

Selçuk Üniversitesi

Proje Numarası

-

Kaynakça

  • Anusree, K., & Varghese, K. O. (2016). Streamflow prediction of Karuvannur River Basin using ANFIS, ANN and MNLR models. Procedia Technology, 24, 101-108.
  • Arıkan, B. B. and E. Kahya, 2019: Homogeneity revisited: Analysis of updated precipitation series in Turkey, Theoretical and Applied Climatology, 135 (1-2), 211-220, DOI: 10.1007/s00704-018-2368-x
  • Badrzadeh, H., Sarukkalige, R., & Jayawardena, A. W. (2018). Intermittent stream flow forecasting and modelling with hybrid wavelet neuro-fuzzy model. Hydrology Research, 49(1), 27-40.
  • Bisht, D. C., & Jangid, A. (2011). Discharge modelling using adaptive neuro-fuzzy inference system. International Journal of Advanced Science and Technology, 31(1), 99-114.
  • Büyükkaracığan, N. (2022). Fuzzy logic applications in civil engineering. İksad Publising House, Ankara.
  • Chai, Y., Jia, L., & Zhang, Z. (2009). Mamdani model based adaptive neural fuzzy inference system and its application. International Journal of Computer and Information Engineering, 3(3), 663-670.
  • Chang, F. J., Hu, H. F., & Chen, Y. C. (2001). Counterpropagation fuzzy–neural network for streamflow reconstruction. Hydrological Processes, 15(2), 219-232.
  • Dawood, M., Rahman, A. U., Mahmood, S., Rahman, G., & Nazir, S. (2021). Assessing the impact of climatic change on discharge in Swat river basin using fuzzy logic model. Arabian Journal of Geosciences, 14(18), 1-16.
  • Dodangeh, E., Ewees, A. A., Shahid, S., & Yaseen, Z. M. (2021). Daily scale river flow simulation: hybridized fuzzy logic model with metaheuristic algorithms. Hydrological Sciences Journal, 66(15), 2155-2169.
  • Ertunga C.Ö & Duckstein L. (2001). Fuzzy conceptual rainfall-runoff models. Journal of Hydro., 253: 41-68. Jayawardena, A. W., Perera, E. D. P., Zhu, B., Amarasekara, J. D., & Vereivalu, V. (2014). A comparative study of fuzzy logic systems approach for river discharge prediction. Journal of hydrology, 514, 85-101.
  • Jia, X., Morel, G., Martell-Flore, H., Hissel, F., & Batoz, J. L. (2016). Fuzzy logic based decision support for mass evacuations of cities prone to coastal or river floods. Environmental modelling & software, 85, 1-10.
  • J.S.R. Jang, C.T. Sun, and E. Mizutani (1996). Neuro-Fuzzy and soft computing: a computational approach to learning and machine ıtelligence. Prentice Hall, England.
  • Jung, C. H., Ham, C. S., & Lee, K. I. (1995). A real-time self-tuning fuzzy controller through scaling factor adjustment for the steam generator of NPP. Fuzzy Sets And Systems, 74(1), 53-60.
  • Karabörk, M. Ç. and E. Kahya, 2009: The Links between the Categorized Southern Oscillation Indicators and Climate and Hydrologic Variables in Turkey. Hydrological Processes, Vol. 23, No 13, 1927-1936, DOI: 10.1002/hyp.7331.
  • Liong, S. Y., Lim, W. H., & Paudyal, G. N. (2000). River stage forecasting in Bangladesh: neural network approach. Journal of computing in civil engineering, 14(1), 1-8.
  • Mahabir, C., Hicks, F. E., & Fayek, A. R. (2003). Application of fuzzy logic to forecast seasonal runoff. Hydrological processes, 17(18), 3749-3762.
  • Mamdani, E. H. (1974). Applications of fuzzy algorithms for control of simple dynamic plant. Proc. Iee, 121, 1585-1588.
  • MGM, (2022). Date of Access:18.11.2022 https://mgm.gov.tr/tahmin/il-ve-ilceler.aspx?il=KAYSERI
  • Patel, A., & Chitnis, K. (2022). Application of fuzzy logic in river water quality modelling for analysis of industrialization and climate change impact on Sabarmati river. Water Supply, 22(1), 238-250.
  • Sun, W., & Trevor, B. (2015). A comparison of fuzzy logic models for breakup forecasting of the Athabasca River. In Proceedings of the 18th CRIPE Workshop—Hydraulics of Ice Covered Rivers, Quebec City, QC, Canada (pp. 18-20)..
  • SYGM, (2022). Date of Access:14.11.2022 https://www.tarimorman.gov.tr/SYGM/Belgeler/Ta%C5%9Fk%C4%B1n%20Y%C3%B6netim%20Planlar%C4%B1/KIZILIRMAK%20HAVZASI%20TA%C5%9EKIN%20YONETIM%20PLANI%20Y%C3%96NET%C4%B0C%C4%B0%20%C3%96ZET%C4%B0.pdf
  • Şarlak, N., E. Kahya and A.O. Bég, 2009: Critical Drought Analysis: A Case Study of Göksu River (Turkey) and North Atlantic Oscillation Influences. Journal of Hydrologic Engineering, Vol. 14, No 8, 795-802, DOI:10.1061/(ASCE)HE.1943-5584.0000052.
  • Şen, Z., & Altunkaynak, A. (2006). A comparative fuzzy logic approach to runoff coefficient and runoff estimation. Hydrological Processes: An International Journal, 20(9), 1993-2009.
  • Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE transactions on systems, man, and cybernetics, (1), 116-132.
  • Tosunoğlu, F., İspirli, M. N., Gürbüz, f., & Şengül, S. (2017). Estimation of missing streamflow records in the euphrates basin using flow duration curves and regression models. Journal of the Institute of Science and Technology, 7(4), 85-94.
  • Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
  • Zhang, Z., Zhang, Q., & Singh, V. P. (2018). Univariate streamflow forecasting using commonly used data-driven models: literature review and case study. Hydrological Sciences Journal, 63(7), 1091-1111.

Estimation of the Monthly Average Flows of the Kızılırmak River Using Fuzzy Logic Approach

Yıl 2023, Sayı: 51, 368 - 375, 31.08.2023
https://doi.org/10.31590/ejosat.1241399

Öz

River flow values are used in the design and operation of hydraulic structures. Determining the correct flow value is important in terms of controlling water movements in the operation of hydraulic structures, irrigation of agricultural lands, hydroelectric production, environmental protection and flood control. In the literature, different methods are used to predict possible river flows using the available data. The fuzzy logic approach is a kind of intelligent system method used in solving problems involving uncertainty. The method has been widely used in the modeling of hydrological data for 2000’s. In this study, the fuzzy logic method was applied to estimate the flow data of Yamula Station on the Kızılırmak River in the Kızılırmak basin, one of the largest basins in Turkey. In addition to these flow station data, the monthly average temperature and monthly total precipitation data of the Kayseri meteorology station, which affects the station flows, were also used for modeling. Three different models were created for the flow estimates. In these models, temperature and precipitation data were selected as input values and river flow data were chosen as output values. In the models, 1982-2012 data of the stations were used. Model output data were tested with data set of 2013, 2014 and 2015. As a result, it has been seen that the fuzzy logic approach gave healthy results when both temperature and precipitation data were used as inputs.

Proje Numarası

-

Kaynakça

  • Anusree, K., & Varghese, K. O. (2016). Streamflow prediction of Karuvannur River Basin using ANFIS, ANN and MNLR models. Procedia Technology, 24, 101-108.
  • Arıkan, B. B. and E. Kahya, 2019: Homogeneity revisited: Analysis of updated precipitation series in Turkey, Theoretical and Applied Climatology, 135 (1-2), 211-220, DOI: 10.1007/s00704-018-2368-x
  • Badrzadeh, H., Sarukkalige, R., & Jayawardena, A. W. (2018). Intermittent stream flow forecasting and modelling with hybrid wavelet neuro-fuzzy model. Hydrology Research, 49(1), 27-40.
  • Bisht, D. C., & Jangid, A. (2011). Discharge modelling using adaptive neuro-fuzzy inference system. International Journal of Advanced Science and Technology, 31(1), 99-114.
  • Büyükkaracığan, N. (2022). Fuzzy logic applications in civil engineering. İksad Publising House, Ankara.
  • Chai, Y., Jia, L., & Zhang, Z. (2009). Mamdani model based adaptive neural fuzzy inference system and its application. International Journal of Computer and Information Engineering, 3(3), 663-670.
  • Chang, F. J., Hu, H. F., & Chen, Y. C. (2001). Counterpropagation fuzzy–neural network for streamflow reconstruction. Hydrological Processes, 15(2), 219-232.
  • Dawood, M., Rahman, A. U., Mahmood, S., Rahman, G., & Nazir, S. (2021). Assessing the impact of climatic change on discharge in Swat river basin using fuzzy logic model. Arabian Journal of Geosciences, 14(18), 1-16.
  • Dodangeh, E., Ewees, A. A., Shahid, S., & Yaseen, Z. M. (2021). Daily scale river flow simulation: hybridized fuzzy logic model with metaheuristic algorithms. Hydrological Sciences Journal, 66(15), 2155-2169.
  • Ertunga C.Ö & Duckstein L. (2001). Fuzzy conceptual rainfall-runoff models. Journal of Hydro., 253: 41-68. Jayawardena, A. W., Perera, E. D. P., Zhu, B., Amarasekara, J. D., & Vereivalu, V. (2014). A comparative study of fuzzy logic systems approach for river discharge prediction. Journal of hydrology, 514, 85-101.
  • Jia, X., Morel, G., Martell-Flore, H., Hissel, F., & Batoz, J. L. (2016). Fuzzy logic based decision support for mass evacuations of cities prone to coastal or river floods. Environmental modelling & software, 85, 1-10.
  • J.S.R. Jang, C.T. Sun, and E. Mizutani (1996). Neuro-Fuzzy and soft computing: a computational approach to learning and machine ıtelligence. Prentice Hall, England.
  • Jung, C. H., Ham, C. S., & Lee, K. I. (1995). A real-time self-tuning fuzzy controller through scaling factor adjustment for the steam generator of NPP. Fuzzy Sets And Systems, 74(1), 53-60.
  • Karabörk, M. Ç. and E. Kahya, 2009: The Links between the Categorized Southern Oscillation Indicators and Climate and Hydrologic Variables in Turkey. Hydrological Processes, Vol. 23, No 13, 1927-1936, DOI: 10.1002/hyp.7331.
  • Liong, S. Y., Lim, W. H., & Paudyal, G. N. (2000). River stage forecasting in Bangladesh: neural network approach. Journal of computing in civil engineering, 14(1), 1-8.
  • Mahabir, C., Hicks, F. E., & Fayek, A. R. (2003). Application of fuzzy logic to forecast seasonal runoff. Hydrological processes, 17(18), 3749-3762.
  • Mamdani, E. H. (1974). Applications of fuzzy algorithms for control of simple dynamic plant. Proc. Iee, 121, 1585-1588.
  • MGM, (2022). Date of Access:18.11.2022 https://mgm.gov.tr/tahmin/il-ve-ilceler.aspx?il=KAYSERI
  • Patel, A., & Chitnis, K. (2022). Application of fuzzy logic in river water quality modelling for analysis of industrialization and climate change impact on Sabarmati river. Water Supply, 22(1), 238-250.
  • Sun, W., & Trevor, B. (2015). A comparison of fuzzy logic models for breakup forecasting of the Athabasca River. In Proceedings of the 18th CRIPE Workshop—Hydraulics of Ice Covered Rivers, Quebec City, QC, Canada (pp. 18-20)..
  • SYGM, (2022). Date of Access:14.11.2022 https://www.tarimorman.gov.tr/SYGM/Belgeler/Ta%C5%9Fk%C4%B1n%20Y%C3%B6netim%20Planlar%C4%B1/KIZILIRMAK%20HAVZASI%20TA%C5%9EKIN%20YONETIM%20PLANI%20Y%C3%96NET%C4%B0C%C4%B0%20%C3%96ZET%C4%B0.pdf
  • Şarlak, N., E. Kahya and A.O. Bég, 2009: Critical Drought Analysis: A Case Study of Göksu River (Turkey) and North Atlantic Oscillation Influences. Journal of Hydrologic Engineering, Vol. 14, No 8, 795-802, DOI:10.1061/(ASCE)HE.1943-5584.0000052.
  • Şen, Z., & Altunkaynak, A. (2006). A comparative fuzzy logic approach to runoff coefficient and runoff estimation. Hydrological Processes: An International Journal, 20(9), 1993-2009.
  • Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE transactions on systems, man, and cybernetics, (1), 116-132.
  • Tosunoğlu, F., İspirli, M. N., Gürbüz, f., & Şengül, S. (2017). Estimation of missing streamflow records in the euphrates basin using flow duration curves and regression models. Journal of the Institute of Science and Technology, 7(4), 85-94.
  • Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
  • Zhang, Z., Zhang, Q., & Singh, V. P. (2018). Univariate streamflow forecasting using commonly used data-driven models: literature review and case study. Hydrological Sciences Journal, 63(7), 1091-1111.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Naci Büyükkaracığan 0000-0002-7944-8902

Proje Numarası -
Erken Görünüm Tarihi 12 Eylül 2023
Yayımlanma Tarihi 31 Ağustos 2023
Yayımlandığı Sayı Yıl 2023 Sayı: 51

Kaynak Göster

APA Büyükkaracığan, N. (2023). Estimation of the Monthly Average Flows of the Kızılırmak River Using Fuzzy Logic Approach. Avrupa Bilim Ve Teknoloji Dergisi(51), 368-375. https://doi.org/10.31590/ejosat.1241399