Araştırma Makalesi
BibTex RIS Kaynak Göster

EFFECT OF CALCINATION TEMPERATURE AND CA:EG RATIO ON TL AND OSL CURVE COMPONENTS OF NEIGHBORITE

Yıl 2022, Cilt: 3 Sayı: 1, 52 - 62, 15.06.2022
https://doi.org/10.55696/ejset.1101711

Öz

This study reveals the differences created by varying calcination temperature and citric acid/ethylene glycol ratio (CA:EG) in thermoluminescence (TL) and optically stimulated luminescence (OSL) curves so that the Neighborite (NaMgF3) compound synthesized using sol-gel can be used as a radiation dosimeter. While producing NaMgF3 phosphors, four different calcination temperatures (700, 800, 900 and 1000 °C) were applied for the calcination process. Characterization analyzes of the samples were performed using X-ray diffraction (XRD) and Scanning electron microscopy (SEM). It was observed that the oxide phases in the crystal structure of the sample increased gradually with increasing calcination temperature. At 1000 °C, it was observed that the crystal structure of the sample was deformed and moved away from the aimed structure. Considering the signal intensities in the TL and OSL glow curves obtained after radiation exposure and the data in the characterization analyzes, the calcination temperature of 800 °C was determined as the optimum temperature. This calcination temperature was kept constant and the samples were reproduced by changing the CA:EG ratio in four different ways (2:4, 4:4, 8:4 and 16:4). By comparing all the sample, the samples with the best crystallization and the most suitable surface morphology were determined. In TL glow curves, it was observed that deep traps could be formed only in samples calcined at 800 °C. Likewise, it was observed from the OSL glow curves that the samples calcined at 800 °C had higher sensitivity. It has been stated that the low sensitivity of the samples calcined at high temperatures is due to the density of the oxide phases formed in the calcination process.

Destekleyen Kurum

Cukurova University

Proje Numarası

FUA-2021-13936

Kaynakça

  • Y. Zhang, W. Jie, P. Chen, W. Liu, J. Hao, Y. Zhang, P. Chen, W. Liu, W. Jie, J. Hao, Ferroelectric and Piezoelectric Effects on the Optical Process in Advanced Materials and Devices, Advanced Materials. 30 (2018) 1707007. https://doi.org/10.1002/ADMA.201707007.
  • Y. Wei, Z. Cheng, J. Lin, An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs, Chemical Society Reviews. 48 (2019) 310–350. https://doi.org/10.1039/C8CS00740C.
  • Z. Cheng, J. Lin, Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering, CrystEngComm. 12 (2010) 2646–2662. https://doi.org/10.1039/C001929A.
  • Z. Zeng, Y. Xu, Z. Zhang, Z. Gao, M. Luo, Z. Yin, C. Zhang, J. Xu, B. Huang, F. Luo, Y. Du, C. Yan, Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications, Chemical Society Reviews. 49 (2020) 1109–1143. https://doi.org/10.1039/C9CS00330D.
  • R. Saha, A. Sundaresan, C.N.R. Rao, Novel features of multiferroic and magnetoelectric ferrites and chromites exhibiting magnetically driven ferroelectricity, Materials Horizons. 1 (2013) 20–31. https://doi.org/10.1039/C3MH00073G.
  • W.J. Yin, B. Weng, J. Ge, Q. Sun, Z. Li, Y. Yan, Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics, Energy & Environmental Science. 12 (2019) 442–462. https://doi.org/10.1039/C8EE01574K.
  • L. Wang, H. Zhou, J. Hu, B. Huang, M. Sun, B. Dong, G. Zheng, Y. Huang, Y. Chen, L. Li, Z. Xu, N. Li, Z. Liu, Q. Chen, L.D. Sun, C.H. Yan, A Eu 3+ -Eu 2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells, Science (1979). 363 (2019) 265–270. https://doi.org/10.1126/SCIENCE.AAU5701/SUPPL_FILE/AAU5701_WANG_SM.PDF.
  • X. Zhang, Z. Li, H. Zhang, S. Ouyang, Z. Zou, Luminescence properties of Sr2ZnWO6:Eu3+ phosphors, Journal of Alloys and Compounds. 469 (2009) L6–L9. https://doi.org/10.1016/J.JALLCOM.2008.01.117.
  • J.S. Yao, J. Ge, B.N. Han, K.H. Wang, H. bin Yao, H.L. Yu, J.H. Li, B.S. Zhu, J.Z. Song, C. Chen, Q. Zhang, H.B. Zeng, Y. Luo, S.H. Yu, Ce3+-Doping to Modulate Photoluminescence Kinetics for Efficient CsPbBr3 Nanocrystals Based Light-Emitting Diodes, J Am Chem Soc. 140 (2018) 3626–3634. https://doi.org/10.1021/JACS.7B11955/SUPPL_FILE/JA7B11955_SI_001.PDF.
  • Y. Cheng, C. Shen, L. Shen, W. Xiang, X. Liang, Tb3+, Eu3+ Co-doped CsPbBr3 QDs Glass with Highly Stable and Luminous Adjustable for White LEDs, ACS Applied Materials and Interfaces. 10 (2018) 21434–21444. https://doi.org/10.1021/ACSAMI.8B05003/SUPPL_FILE/AM8B05003_SI_001.PDF.
  • M. Pellerin, E. Glais, T. Lecuyer, J. Xu, J. Seguin, S. Tanabe, C. Chanéac, B. Viana, C. Richard, LaAlO3:Cr3+, Sm3+: Nano-perovskite with persistent luminescence for in vivo optical imaging, Journal of Luminescence. 202 (2018) 83–88. https://doi.org/10.1016/J.JLUMIN.2018.05.024.
  • T. Addabbo, F. Bertocci, A. Fort, M. Gregorkiewitz, M. Mugnaini, R. Spinicci, V. Vignoli, Gas sensing properties of YMnO3 based materials for the detection of NOx and CO, Sensors and Actuators B: Chemical. 244 (2017) 1054–1070. https://doi.org/10.1016/J.SNB.2017.01.054.
  • G. Chen, Y. Zhu, H.M. Chen, Z. Hu, S.F. Hung, N. Ma, J. Dai, H.J. Lin, C. te Chen, W. Zhou, Z. Shao, An Amorphous Nickel–Iron-Based Electrocatalyst with Unusual Local Structures for Ultrafast Oxygen Evolution Reaction, Advanced Materials. 31 (2019) 1900883. https://doi.org/10.1002/ADMA.201900883.
  • E. Grabowska, Selected perovskite oxides: Characterization, preparation and photocatalytic properties—A review, Applied Catalysis B: Environmental. 186 (2016) 97–126. https://doi.org/10.1016/J.APCATB.2015.12.035.
  • B. Arun, V.R. Akshay, G.R. Mutta, C. Venkatesh, M. Vasundhara, Mixed rare earth oxides derived from monazite sand as an inexpensive precursor material for room temperature magnetic refrigeration applications, Materials Research Bulletin. 94 (2017) 537–543. https://doi.org/10.1016/J.MATERRESBULL.2017.07.006.
  • Y. Cao, S. Cao, W. Ren, Z. Feng, S. Yuan, B. Kang, B. Lu, J. Zhang, Magnetization switching of rare earth orthochromite CeCrO3, Applied Physics Letters. 104 (2014) 232405. https://doi.org/10.1063/1.4882642.
  • X. Chen, J. Song, X. Chen, H. Yang, X-ray-activated nanosystems for theranostic applications, Chemical Society Reviews. 48 (2019) 3073–3101. https://doi.org/10.1039/C8CS00921J.
  • T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki, S. Hasegawa, Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries, Advanced Materials. 30 (2018) 1803075. https://doi.org/10.1002/ADMA.201803075.
  • X. Liu, N. Kent, A. Ceballos, R. Streubel, Y. Jiang, Y. Chai, P.Y. Kim, J. Forth, F. Hellman, S. Shi, D. Wang, B.A. Helms, P.D. Ashby, P. Fischer, T.P. Russell, Reconfigurable ferromagnetic liquid droplets, Science (1979). 365 (2019) 264–267. https://doi.org/10.1126/SCIENCE.AAW8719/SUPPL_FILE/AAW8719S9.MP4.
  • C.M. Sutter-Fella, Y. Li, M. Amani, J.W. Ager, F.M. Toma, E. Yablonovitch, I.D. Sharp, A. Javey, High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites, Nano Letters. 16 (2016) 800–806. https://doi.org/10.1021/ACS.NANOLETT.5B04884/SUPPL_FILE/NL5B04884_SI_001.PDF.
  • Y. Kim, E. Yassitepe, O. Voznyy, R. Comin, G. Walters, X. Gong, P. Kanjanaboos, A.F. Nogueira, E.H. Sargent, Efficient Luminescence from Perovskite Quantum Dot Solids, ACS Applied Materials and Interfaces. 7 (2015) 25007–25013. https://doi.org/10.1021/ACSAMI.5B09084/SUPPL_FILE/AM5B09084_SI_001.PDF.
  • M.D. Birowosuto, D. Cortecchia, W. Drozdowski, K. Brylew, W. Lachmanski, A. Bruno, C. Soci, X-ray Scintillation in Lead Halide Perovskite Crystals, Scientific Reports 2016 6:1. 6 (2016) 1–10. https://doi.org/10.1038/srep37254.
  • H. Yokoi, N. Wakiya, K. Shinozaki, N. Mizutani, Dielectric Properties and its Frequency Dependence of BaTiO3 Thin Film Single-Layer Capacitor that is Applicable to Multilayer Structure, Key Engineering Materials. 269 (2004) 229–232. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/KEM.269.229.
  • I. Dursun, C. Shen, M.R. Parida, J. Pan, S.P. Sarmah, D. Priante, N. Alyami, J. Liu, M.I. Saidaminov, M.S. Alias, A.L. Abdelhady, T.K. Ng, O.F. Mohammed, B.S. Ooi, O.M. Bakr, Perovskite Nanocrystals as a Color Converter for Visible Light Communication, ACS Photonics. 3 (2016) 1150–1156. https://doi.org/10.1021/ACSPHOTONICS.6B00187/SUPPL_FILE/PH6B00187_SI_001.PDF.
  • V. Guckan, D. Kaya, V. Altunal, A. Ekicibil, F. Karadag, A. Ozdemir, Z. Yegingil, Impact of Li concentration in KMgF3:Eu,Yb fluoroperovskite on structure and luminescence properties, Journal of Alloys and Compounds. 902 (2022) 163810. https://doi.org/10.1016/J.JALLCOM.2022.163810.
  • Z. Li, X. An, X. Cheng, X. Wang, … H.Z.-C., undefined 2014, First-principles study of the electronic structure and optical properties of cubic Perovskite NaMgF3, Iopscience.Iop.Org. (n.d.). https://iopscience.iop.org/article/10.1088/1674-1056/23/3/037104/meta (accessed April 10, 2022).
  • X. Li, F. Cao, D. Yu, J. Chen, Z. Sun, Y. Shen, Y. Zhu, L. Wang, Y. Wei, Y. Wu, H. Zeng, All Inorganic Halide Perovskites Nanosystem: Synthesis, Structural Features, Optical Properties and Optoelectronic Applications, Small. 13 (2017) 1603996. https://doi.org/10.1002/SMLL.201603996.
  • D.B. Mitzi, Templating and structural engineering in organic–inorganic perovskites, Journal of the Chemical Society, Dalton Transactions. 0 (2001) 1–12. https://doi.org/10.1039/B007070J.
  • D. Chen, X. Chen, Luminescent perovskite quantum dots: synthesis, microstructures, optical properties and applications, Journal of Materials Chemistry C. 7 (2019) 1413–1446. https://doi.org/10.1039/C8TC05545A.
  • E.C.T. Chao, H.T. Evans Jr, B.J. Skinner, C. Milton, Neighborite, NaMgF3, a new mineral from the green river formation, South Ouray, Utah, American Mineralogist: Journal of Earth and Planetary Materials. 46 (1961) 379–393.
  • M. O’Keeffe, J.O. Bovin, Solid Electrolyte Behavior of NaMgF3: Geophysical Implications, Science (1979). 206 (1979) 599–600. https://doi.org/10.1126/SCIENCE.206.4418.599.
  • K.S. Knight, G.D. Price, J.A. Stuart, I.G. Wood, High-temperature structural phase transitions in neighborite: A high-resolution neutron powder diffraction investigation, Physics and Chemistry of Minerals. 42 (2015) 45–52. https://doi.org/10.1007/S00269-014-0698-5/FIGURES/3.
  • Y. Zhao, D.J. Weidner, J. Ko, K. Leinenweber, X. Liu, B. Li, Y. Meng, R.E.G. Pacalo, M.T. Vaughan, Y. Wang, A. Yeganeh-Haeri, Perovskite at high P-T conditions: An in situ synchrotron X ray diffraction study of NaMgF3 perovskite, Journal of Geophysical Research: Solid Earth. 99 (1994) 2871–2885. https://doi.org/10.1029/93JB02757.
  • N.J.M. le Masson, A.P. Vink, P. Dorenbos, A.J.J. Bos, C.W.E. VanEijk, J.P. Chaminade, Ce3+ and Pr3+5d-energy levels in the (pseudo) perovskites KMgF3 and NaMgF3, Journal of Luminescence. 101 (2003) 175–183. https://doi.org/10.1016/S0022-2313(02)00411-8.
  • Y.P. Du, Y.W. Zhang, Z.G. Yan, L.D. Sun, S. Gao, C.H. Yan, Single-Crystalline and Near-Monodispersed NaMF3 (M=Mn, Co, Ni, Mg) and LiMAlF6 (M=Ca, Sr) Nanocrystals from Cothermolysis of Multiple Trifluoroacetates in Solution, Chemistry – An Asian Journal. 2 (2007) 965–974. https://doi.org/10.1002/ASIA.200700054.
  • S. Watanabe, T. Ishii, K. Fujimura, K. Ogasawara, First-principles relativistic calculation for 4f–5d transition energy of Ce3+ in various fluoride hosts, Journal of Solid State Chemistry. 179 (2006) 2438–2442. https://doi.org/10.1016/J.JSSC.2006.04.040.
  • J.J. Schuyt, G.V.M. Williams, Oxygen-impurity charge transfer in NaMgF3:Ln (Ln = Yb, Sm, or Eu): Establishing the lanthanide energy levels in NaMgF3, Journal of Luminescence. 211 (2019) 413–417. https://doi.org/10.1016/J.JLUMIN.2019.04.004.
  • J.J. Schuyt, G.V.M. Williams, Radiation-induced changes in the optical properties of NaMgF3(Sm): Observation of resettable Sm radio-photoluminescence, Materials Research Bulletin. 106 (2018) 455–458. https://doi.org/10.1016/J.MATERRESBULL.2018.06.039.
  • J. Zhang, J. Wang, J. Xie, L. Wang, Q. Zhang, Enhancement of upconversion luminescence intensity in NaMgF3:2.5%Yb3+, 0.5%Er3+ nanocrystals with Eu3+ doping, Journal of Materials Science: Materials in Electronics. 32 (2021) 20882–20890. https://doi.org/10.1007/S10854-021-06604-Z/FIGURES/8.
  • M. Venkata Narayana, K. Somaliah, L.H. Brixner, Thermally stimulated luminescence of gadolnium-activated NaMgF3 at 77 K, Crystal Research and Technology. 25 (1990) K209–K213. https://doi.org/10.1002/CRAT.2170250921.
  • J.J. Schuyt, G.V.M. Williams, Photoluminescence of Dy3+ and Dy2+ in NaMgF3:Dy: A potential infrared radiophotoluminescence dosimeter, Radiation Measurements. 134 (2020) 106326. https://doi.org/10.1016/J.RADMEAS.2020.106326.
  • J.J. Schuyt, G.V.M. Williams, Quenching of the Sm2+ luminescence in NaMgF3:Sm via photothermal ionization: Alternative method to determine divalent lanthanide trap depths, Applied Physics Letters. 115 (2019) 181104. https://doi.org/10.1063/1.5122669.
  • J.C. Gâcon, A. Gros, H. Bill, J.P. Wicky, New measurements of the emission spectra of Sm2+ in KMgF3 and NaMgF3 crystals, Journal of Physics and Chemistry of Solids. 42 (1981) 587–593. https://doi.org/10.1016/0022-3697(81)90107-4.
  • H. Nalumaga, J.J. Schuyt, R.D. Breukers, G.V.M. Williams, Radiation-induced changes in the photoluminescence properties of NaMgF3:Yb nanoparticles: Yb3+ → Yb2+ valence conversion and oxygen-impurity charge transfer, Materials Research Bulletin. 145 (2022) 111562. https://doi.org/10.1016/J.MATERRESBULL.2021.111562.
  • V.S. Singh, P.D. Belsare, S. v. Moharil, Synthesis, characterization, and luminescence studies of rare-earth-activated NaMgF3, Luminescence. 37 (2022) 89–96. https://doi.org/10.1002/BIO.4149.
  • D. Afouxenidis, G.S. Polymeris, N.C. Tsirliganis, G. Kitis, Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program, Radiation Protection Dosimetry. 149 (2012) 363–370. https://doi.org/10.1093/RPD/NCR315.
  • G. Kitis, J.M. Gomez-Ros, J.W.N. Tuyn, Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics, Journal of Physics D: Applied Physics. 31 (1998) 2636. https://doi.org/10.1088/0022-3727/31/19/037.
  • V. Pagonis, G. Kitis, C. Furetta, Numerical and practical exercises in thermoluminescence, (2006). Numerical and practical exercises in thermoluminescence. Springer Science & Business Media, 2006.
Yıl 2022, Cilt: 3 Sayı: 1, 52 - 62, 15.06.2022
https://doi.org/10.55696/ejset.1101711

Öz

Bu çalışma, sol-jel üretim tekniği kullanılarak sentezlenen Neighborite (NaMgF3) bileşiğinin bir radyasyon dozimetresi olarak kullanılabilmesi için, termolüminesans (TL) ve optiksel uyarılmış lüminesans (OSL) eğrilerinde kalsinasyon sıcaklığı ve sitrik asit/etilen glikol (CA:EG) oranının değiştirilmesiyle meydana gelen farklılıkları ortaya koymaktadır. NaMgF3 fosforları üretilirken kalsinasyon işlemi için dört farklı kalsinasyon sıcaklığı (700, 800, 900 ve 1000 °C) uygulandı. Örneklerin karakterizasyon analizleri X-ışını kırınım (XRD) ve Taramalı elektron mikroskobu (SEM) kullanılarak yapıldı. Artan kalsinasyon sıcaklığı ile örneğin kristal yapısındaki oksit fazların giderek arttığı gözlemlendi. 1000 °C`de ise örneğin kristal yapısının deforme olduğu ve amaçlanan yapıdan uzaklaştığı gözlemlendi. Radyasyon maruziyetinden sonra elde edilen TL ve OSL ışıma eğrilerindeki sinyal yoğunlukları ve karakterizasyon analizlerindeki veriler dikkate alındığında 800 °C kalsinasyon sıcaklığı uygun sıcaklık olarak belirlendi. Bu kalsinasyon sıcaklığı sabit tutulup örneklerin CA:EG oranı dört farklı şekilde (2:4, 4:4, 8:4 ve 16:4) değiştirilerek yeniden üretildi. Elde edilen tüm örnekler karşılaştırılarak en iyi kristallenen ve yüzey morfolojisi en uygun örnekler belirlendi. TL ışıma eğrilerinde sadece 800 °C de kalsine edilen örneklerde derin tuzakların oluşturulabildiği gözlemlendi. Aynı şekilde OSL ışıma eğrileri kontrol edildiğinde 800 °C de kalsine edilen örneklerin daha yüksek hassasiyetli olduğu gözlemlendi. Yüksek sıcaklıklarda kalsine edilen örneklerin düşük hassasiyette olmaları kalsinasyon işleminde meydana gelen oksit fazların yoğunluğundan olduğu belirtilmiştir.

Proje Numarası

FUA-2021-13936

Kaynakça

  • Y. Zhang, W. Jie, P. Chen, W. Liu, J. Hao, Y. Zhang, P. Chen, W. Liu, W. Jie, J. Hao, Ferroelectric and Piezoelectric Effects on the Optical Process in Advanced Materials and Devices, Advanced Materials. 30 (2018) 1707007. https://doi.org/10.1002/ADMA.201707007.
  • Y. Wei, Z. Cheng, J. Lin, An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs, Chemical Society Reviews. 48 (2019) 310–350. https://doi.org/10.1039/C8CS00740C.
  • Z. Cheng, J. Lin, Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering, CrystEngComm. 12 (2010) 2646–2662. https://doi.org/10.1039/C001929A.
  • Z. Zeng, Y. Xu, Z. Zhang, Z. Gao, M. Luo, Z. Yin, C. Zhang, J. Xu, B. Huang, F. Luo, Y. Du, C. Yan, Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications, Chemical Society Reviews. 49 (2020) 1109–1143. https://doi.org/10.1039/C9CS00330D.
  • R. Saha, A. Sundaresan, C.N.R. Rao, Novel features of multiferroic and magnetoelectric ferrites and chromites exhibiting magnetically driven ferroelectricity, Materials Horizons. 1 (2013) 20–31. https://doi.org/10.1039/C3MH00073G.
  • W.J. Yin, B. Weng, J. Ge, Q. Sun, Z. Li, Y. Yan, Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics, Energy & Environmental Science. 12 (2019) 442–462. https://doi.org/10.1039/C8EE01574K.
  • L. Wang, H. Zhou, J. Hu, B. Huang, M. Sun, B. Dong, G. Zheng, Y. Huang, Y. Chen, L. Li, Z. Xu, N. Li, Z. Liu, Q. Chen, L.D. Sun, C.H. Yan, A Eu 3+ -Eu 2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells, Science (1979). 363 (2019) 265–270. https://doi.org/10.1126/SCIENCE.AAU5701/SUPPL_FILE/AAU5701_WANG_SM.PDF.
  • X. Zhang, Z. Li, H. Zhang, S. Ouyang, Z. Zou, Luminescence properties of Sr2ZnWO6:Eu3+ phosphors, Journal of Alloys and Compounds. 469 (2009) L6–L9. https://doi.org/10.1016/J.JALLCOM.2008.01.117.
  • J.S. Yao, J. Ge, B.N. Han, K.H. Wang, H. bin Yao, H.L. Yu, J.H. Li, B.S. Zhu, J.Z. Song, C. Chen, Q. Zhang, H.B. Zeng, Y. Luo, S.H. Yu, Ce3+-Doping to Modulate Photoluminescence Kinetics for Efficient CsPbBr3 Nanocrystals Based Light-Emitting Diodes, J Am Chem Soc. 140 (2018) 3626–3634. https://doi.org/10.1021/JACS.7B11955/SUPPL_FILE/JA7B11955_SI_001.PDF.
  • Y. Cheng, C. Shen, L. Shen, W. Xiang, X. Liang, Tb3+, Eu3+ Co-doped CsPbBr3 QDs Glass with Highly Stable and Luminous Adjustable for White LEDs, ACS Applied Materials and Interfaces. 10 (2018) 21434–21444. https://doi.org/10.1021/ACSAMI.8B05003/SUPPL_FILE/AM8B05003_SI_001.PDF.
  • M. Pellerin, E. Glais, T. Lecuyer, J. Xu, J. Seguin, S. Tanabe, C. Chanéac, B. Viana, C. Richard, LaAlO3:Cr3+, Sm3+: Nano-perovskite with persistent luminescence for in vivo optical imaging, Journal of Luminescence. 202 (2018) 83–88. https://doi.org/10.1016/J.JLUMIN.2018.05.024.
  • T. Addabbo, F. Bertocci, A. Fort, M. Gregorkiewitz, M. Mugnaini, R. Spinicci, V. Vignoli, Gas sensing properties of YMnO3 based materials for the detection of NOx and CO, Sensors and Actuators B: Chemical. 244 (2017) 1054–1070. https://doi.org/10.1016/J.SNB.2017.01.054.
  • G. Chen, Y. Zhu, H.M. Chen, Z. Hu, S.F. Hung, N. Ma, J. Dai, H.J. Lin, C. te Chen, W. Zhou, Z. Shao, An Amorphous Nickel–Iron-Based Electrocatalyst with Unusual Local Structures for Ultrafast Oxygen Evolution Reaction, Advanced Materials. 31 (2019) 1900883. https://doi.org/10.1002/ADMA.201900883.
  • E. Grabowska, Selected perovskite oxides: Characterization, preparation and photocatalytic properties—A review, Applied Catalysis B: Environmental. 186 (2016) 97–126. https://doi.org/10.1016/J.APCATB.2015.12.035.
  • B. Arun, V.R. Akshay, G.R. Mutta, C. Venkatesh, M. Vasundhara, Mixed rare earth oxides derived from monazite sand as an inexpensive precursor material for room temperature magnetic refrigeration applications, Materials Research Bulletin. 94 (2017) 537–543. https://doi.org/10.1016/J.MATERRESBULL.2017.07.006.
  • Y. Cao, S. Cao, W. Ren, Z. Feng, S. Yuan, B. Kang, B. Lu, J. Zhang, Magnetization switching of rare earth orthochromite CeCrO3, Applied Physics Letters. 104 (2014) 232405. https://doi.org/10.1063/1.4882642.
  • X. Chen, J. Song, X. Chen, H. Yang, X-ray-activated nanosystems for theranostic applications, Chemical Society Reviews. 48 (2019) 3073–3101. https://doi.org/10.1039/C8CS00921J.
  • T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki, S. Hasegawa, Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries, Advanced Materials. 30 (2018) 1803075. https://doi.org/10.1002/ADMA.201803075.
  • X. Liu, N. Kent, A. Ceballos, R. Streubel, Y. Jiang, Y. Chai, P.Y. Kim, J. Forth, F. Hellman, S. Shi, D. Wang, B.A. Helms, P.D. Ashby, P. Fischer, T.P. Russell, Reconfigurable ferromagnetic liquid droplets, Science (1979). 365 (2019) 264–267. https://doi.org/10.1126/SCIENCE.AAW8719/SUPPL_FILE/AAW8719S9.MP4.
  • C.M. Sutter-Fella, Y. Li, M. Amani, J.W. Ager, F.M. Toma, E. Yablonovitch, I.D. Sharp, A. Javey, High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites, Nano Letters. 16 (2016) 800–806. https://doi.org/10.1021/ACS.NANOLETT.5B04884/SUPPL_FILE/NL5B04884_SI_001.PDF.
  • Y. Kim, E. Yassitepe, O. Voznyy, R. Comin, G. Walters, X. Gong, P. Kanjanaboos, A.F. Nogueira, E.H. Sargent, Efficient Luminescence from Perovskite Quantum Dot Solids, ACS Applied Materials and Interfaces. 7 (2015) 25007–25013. https://doi.org/10.1021/ACSAMI.5B09084/SUPPL_FILE/AM5B09084_SI_001.PDF.
  • M.D. Birowosuto, D. Cortecchia, W. Drozdowski, K. Brylew, W. Lachmanski, A. Bruno, C. Soci, X-ray Scintillation in Lead Halide Perovskite Crystals, Scientific Reports 2016 6:1. 6 (2016) 1–10. https://doi.org/10.1038/srep37254.
  • H. Yokoi, N. Wakiya, K. Shinozaki, N. Mizutani, Dielectric Properties and its Frequency Dependence of BaTiO3 Thin Film Single-Layer Capacitor that is Applicable to Multilayer Structure, Key Engineering Materials. 269 (2004) 229–232. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/KEM.269.229.
  • I. Dursun, C. Shen, M.R. Parida, J. Pan, S.P. Sarmah, D. Priante, N. Alyami, J. Liu, M.I. Saidaminov, M.S. Alias, A.L. Abdelhady, T.K. Ng, O.F. Mohammed, B.S. Ooi, O.M. Bakr, Perovskite Nanocrystals as a Color Converter for Visible Light Communication, ACS Photonics. 3 (2016) 1150–1156. https://doi.org/10.1021/ACSPHOTONICS.6B00187/SUPPL_FILE/PH6B00187_SI_001.PDF.
  • V. Guckan, D. Kaya, V. Altunal, A. Ekicibil, F. Karadag, A. Ozdemir, Z. Yegingil, Impact of Li concentration in KMgF3:Eu,Yb fluoroperovskite on structure and luminescence properties, Journal of Alloys and Compounds. 902 (2022) 163810. https://doi.org/10.1016/J.JALLCOM.2022.163810.
  • Z. Li, X. An, X. Cheng, X. Wang, … H.Z.-C., undefined 2014, First-principles study of the electronic structure and optical properties of cubic Perovskite NaMgF3, Iopscience.Iop.Org. (n.d.). https://iopscience.iop.org/article/10.1088/1674-1056/23/3/037104/meta (accessed April 10, 2022).
  • X. Li, F. Cao, D. Yu, J. Chen, Z. Sun, Y. Shen, Y. Zhu, L. Wang, Y. Wei, Y. Wu, H. Zeng, All Inorganic Halide Perovskites Nanosystem: Synthesis, Structural Features, Optical Properties and Optoelectronic Applications, Small. 13 (2017) 1603996. https://doi.org/10.1002/SMLL.201603996.
  • D.B. Mitzi, Templating and structural engineering in organic–inorganic perovskites, Journal of the Chemical Society, Dalton Transactions. 0 (2001) 1–12. https://doi.org/10.1039/B007070J.
  • D. Chen, X. Chen, Luminescent perovskite quantum dots: synthesis, microstructures, optical properties and applications, Journal of Materials Chemistry C. 7 (2019) 1413–1446. https://doi.org/10.1039/C8TC05545A.
  • E.C.T. Chao, H.T. Evans Jr, B.J. Skinner, C. Milton, Neighborite, NaMgF3, a new mineral from the green river formation, South Ouray, Utah, American Mineralogist: Journal of Earth and Planetary Materials. 46 (1961) 379–393.
  • M. O’Keeffe, J.O. Bovin, Solid Electrolyte Behavior of NaMgF3: Geophysical Implications, Science (1979). 206 (1979) 599–600. https://doi.org/10.1126/SCIENCE.206.4418.599.
  • K.S. Knight, G.D. Price, J.A. Stuart, I.G. Wood, High-temperature structural phase transitions in neighborite: A high-resolution neutron powder diffraction investigation, Physics and Chemistry of Minerals. 42 (2015) 45–52. https://doi.org/10.1007/S00269-014-0698-5/FIGURES/3.
  • Y. Zhao, D.J. Weidner, J. Ko, K. Leinenweber, X. Liu, B. Li, Y. Meng, R.E.G. Pacalo, M.T. Vaughan, Y. Wang, A. Yeganeh-Haeri, Perovskite at high P-T conditions: An in situ synchrotron X ray diffraction study of NaMgF3 perovskite, Journal of Geophysical Research: Solid Earth. 99 (1994) 2871–2885. https://doi.org/10.1029/93JB02757.
  • N.J.M. le Masson, A.P. Vink, P. Dorenbos, A.J.J. Bos, C.W.E. VanEijk, J.P. Chaminade, Ce3+ and Pr3+5d-energy levels in the (pseudo) perovskites KMgF3 and NaMgF3, Journal of Luminescence. 101 (2003) 175–183. https://doi.org/10.1016/S0022-2313(02)00411-8.
  • Y.P. Du, Y.W. Zhang, Z.G. Yan, L.D. Sun, S. Gao, C.H. Yan, Single-Crystalline and Near-Monodispersed NaMF3 (M=Mn, Co, Ni, Mg) and LiMAlF6 (M=Ca, Sr) Nanocrystals from Cothermolysis of Multiple Trifluoroacetates in Solution, Chemistry – An Asian Journal. 2 (2007) 965–974. https://doi.org/10.1002/ASIA.200700054.
  • S. Watanabe, T. Ishii, K. Fujimura, K. Ogasawara, First-principles relativistic calculation for 4f–5d transition energy of Ce3+ in various fluoride hosts, Journal of Solid State Chemistry. 179 (2006) 2438–2442. https://doi.org/10.1016/J.JSSC.2006.04.040.
  • J.J. Schuyt, G.V.M. Williams, Oxygen-impurity charge transfer in NaMgF3:Ln (Ln = Yb, Sm, or Eu): Establishing the lanthanide energy levels in NaMgF3, Journal of Luminescence. 211 (2019) 413–417. https://doi.org/10.1016/J.JLUMIN.2019.04.004.
  • J.J. Schuyt, G.V.M. Williams, Radiation-induced changes in the optical properties of NaMgF3(Sm): Observation of resettable Sm radio-photoluminescence, Materials Research Bulletin. 106 (2018) 455–458. https://doi.org/10.1016/J.MATERRESBULL.2018.06.039.
  • J. Zhang, J. Wang, J. Xie, L. Wang, Q. Zhang, Enhancement of upconversion luminescence intensity in NaMgF3:2.5%Yb3+, 0.5%Er3+ nanocrystals with Eu3+ doping, Journal of Materials Science: Materials in Electronics. 32 (2021) 20882–20890. https://doi.org/10.1007/S10854-021-06604-Z/FIGURES/8.
  • M. Venkata Narayana, K. Somaliah, L.H. Brixner, Thermally stimulated luminescence of gadolnium-activated NaMgF3 at 77 K, Crystal Research and Technology. 25 (1990) K209–K213. https://doi.org/10.1002/CRAT.2170250921.
  • J.J. Schuyt, G.V.M. Williams, Photoluminescence of Dy3+ and Dy2+ in NaMgF3:Dy: A potential infrared radiophotoluminescence dosimeter, Radiation Measurements. 134 (2020) 106326. https://doi.org/10.1016/J.RADMEAS.2020.106326.
  • J.J. Schuyt, G.V.M. Williams, Quenching of the Sm2+ luminescence in NaMgF3:Sm via photothermal ionization: Alternative method to determine divalent lanthanide trap depths, Applied Physics Letters. 115 (2019) 181104. https://doi.org/10.1063/1.5122669.
  • J.C. Gâcon, A. Gros, H. Bill, J.P. Wicky, New measurements of the emission spectra of Sm2+ in KMgF3 and NaMgF3 crystals, Journal of Physics and Chemistry of Solids. 42 (1981) 587–593. https://doi.org/10.1016/0022-3697(81)90107-4.
  • H. Nalumaga, J.J. Schuyt, R.D. Breukers, G.V.M. Williams, Radiation-induced changes in the photoluminescence properties of NaMgF3:Yb nanoparticles: Yb3+ → Yb2+ valence conversion and oxygen-impurity charge transfer, Materials Research Bulletin. 145 (2022) 111562. https://doi.org/10.1016/J.MATERRESBULL.2021.111562.
  • V.S. Singh, P.D. Belsare, S. v. Moharil, Synthesis, characterization, and luminescence studies of rare-earth-activated NaMgF3, Luminescence. 37 (2022) 89–96. https://doi.org/10.1002/BIO.4149.
  • D. Afouxenidis, G.S. Polymeris, N.C. Tsirliganis, G. Kitis, Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program, Radiation Protection Dosimetry. 149 (2012) 363–370. https://doi.org/10.1093/RPD/NCR315.
  • G. Kitis, J.M. Gomez-Ros, J.W.N. Tuyn, Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics, Journal of Physics D: Applied Physics. 31 (1998) 2636. https://doi.org/10.1088/0022-3727/31/19/037.
  • V. Pagonis, G. Kitis, C. Furetta, Numerical and practical exercises in thermoluminescence, (2006). Numerical and practical exercises in thermoluminescence. Springer Science & Business Media, 2006.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klasik Fizik (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Veysi Güçkan 0000-0001-7693-7770

Proje Numarası FUA-2021-13936
Yayımlanma Tarihi 15 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 3 Sayı: 1

Kaynak Göster

IEEE V. Güçkan, “EFFECT OF CALCINATION TEMPERATURE AND CA:EG RATIO ON TL AND OSL CURVE COMPONENTS OF NEIGHBORITE”, (EJSET), c. 3, sy. 1, ss. 52–62, 2022, doi: 10.55696/ejset.1101711.