Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, , 38 - 51, 01.06.2020
https://doi.org/10.36222/ejt.635719

Öz

Kaynakça

  • [1] S. P. Mohanty and E. Koucianos, “Biosensors: A tutorial review,” IEEE Potentials, vol. 25, no. 2, pp. 35–40, 2006.[2] S. Song, H. Xu, and C. Fan, “Potential diagnostic applications of biosensors: Current and future directions,” Int. J. Nanomedicine, vol. 1, no. 4, pp. 433–440, 2006.[3] S. K. Vashist, “Point-of-care diagnostics: Recent advances and trends,” Biosensors, vol. 7, no. 4. 2017.[4] S. Vigneshvar, C. C. Sudhakumari, B. Senthilkumaran, and H. Prakash, “Recent advances in biosensor technology for potential applications - an overview,” Front. Bioeng. Biotechnol., vol. 4, no. FEB, p. 11, 2016.[5] B. Wang, U. Akiba, and J. I. Anzai, “Recent progress in nanomaterial-based electrochemical biosensors for cancer biomarkers: A review,” Molecules, vol. 22, no. 7, p. 1048, 2017.[6] D. Issadore et al., “Magnetic sensing technology for molecular analyses,” Lab Chip, vol. 14, no. 14, pp. 2385–2397, 2014.[7] T. Takamura, P. J. Ko, J. Sharma, R. Yukino, S. Ishizawa, and A. Sandhu, “Magnetic-particle-sensing based diagnostic protocols and applications,” Sensors (Switzerland), vol. 15, no. 6, pp. 12983–12998, 2015.[8] J. Llandro, J. J. Palfreyman, A. Ionescu, and C. H. W. Barnes, “Magnetic biosensor technologies for medical applications: A review,” Med. Biol. Eng. Comput., vol. 48, no. 10, pp. 977–998, 2010.[9] R. S. Popović, Hall effect devices, 2nd ed. Philadelphia : Institute of Physics Pub., 2004.[10] J. Izci, Davut; Hedley, “Constructing an Electronic Circuitry for Label-free Hall Biosensors,” Balk. J. Electr. Comput. Eng., vol. 7, no. 4, pp. 366–372, 2019.[11] G. Rizzi, F. W. Osterberg, A. D. Henriksen, M. Dufva, and M. F. Hansen, “On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor,” J. Magn. Magn. Mater., vol. 380, pp. 215–220, 2015.[12] M. Volmer and M. Avram, “Using permalloy based planar hall effect sensors to capture and detect superparamagnetic beads for lab on a chip applications,” J. Magn. Magn. Mater., vol. 381, pp. 481–487, 2015.[13] T. Q. Hung, S. Oh, J. R. Jeong, and C. G. Kim, “Spin-valve planar Hall sensor for single bead detection,” Sensors Actuators, A Phys., vol. 157, no. 1, pp. 42–46, 2010.[14] D. Drung et al., “Highly sensitive and easy-to-use SQUID sensors,” IEEE Trans. Appl. Supercond., vol. 17, no. 2, pp. 699–704, 2007.[15] D. Izci, C. Dale, N. Keegan, and J. Hedley, “The Construction of a Graphene Hall Effect Magnetometer,” IEEE Sens. J., vol. 18, no. 23, pp. 9534–9541, Dec. 2018.[16] A. Sandhu, Y. Kumagai, A. Lapicki, S. Sakamoto, M. Abe, and H. Handa, “High efficiency Hall effect micro-biosensor platform for detection of magnetically labeled biomolecules,” Biosens. Bioelectron., vol. 22, no. 9–10, pp. 2115–2120, 2007.[17] K. Togawa et al., “Detection of magnetically labeled DNA using pseudomorphic AlGaAs/InGaAs/GaAs heterostructure micro-Hall biosensors,” J. Appl. Phys., vol. 99, no. 8, 2006.[18] G. Mihajlović et al., “Detection of single magnetic bead for biological applications using an InAs quantum-well micro-Hall sensor,” Appl. Phys. Lett., vol. 87, no. 11, 2005.[19] H. Xu et al., “Batch-fabricated high-performance graphene Hall elements,” Sci. Rep., vol. 3, p. 1207, 2013.[20] M. Bando et al., “High sensitivity and multifunctional micro-Hall sensors fabricated using InAlSb/InAsSb/InAlSb heterostructures,” J. Appl. Phys., vol. 105, no. 7, p. 07E909, 2009.[21] O. Kazakova et al., “Detection of a micron-sized magnetic particle using insb hall sensor,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4499–4502, 2009.[22] D. Petit, D. Atkinson, S. Johnston, D. Wood, and R. P. Cowburn, “Room temperature performance of submicron bismuth Hall probes,” IEE Proc. Sci. Meas. Technol., vol. 151, no. 2, pp. 127–130, 2004.[23] B. Chen, L. Huang, X. Ma, L. Dong, Z. Zhang, and L. M. Peng, “Exploration of sensitivity limit for graphene magnetic sensors,” Carbon N. Y., vol. 94, pp. 585–589, 2015.[24] J. M. Pingarrón, P. Yáñez-Sedeño, and A. González-Cortés, “Gold nanoparticle-based electrochemical biosensors,” Electrochim. Acta, vol. 53, no. 19, pp. 5848–5866, 2008.[25] K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, “Gold nanoparticles in chemical and biological sensing,” Chem. Rev., vol. 112, no. 5, pp. 2739–2779, 2012.[26] N. Khlebtsov and L. Dykman, “Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies,” Chem. Soc. Rev., vol. 40, no. 3, pp. 1647–1671, 2011.[27] M. A. Paun, J. M. Sallese, and M. Kayal, “Hall effect sensors design, integration and behavior analysis,” J. Sens. Actuator Networks, vol. 2, no. 1, pp. 85–97, 2013.[28] M. A. Paun, J. M. Sallese, and M. Kayal, “Comparative study on the performance of five different hall effect devices,” Sensors (Switzerland), vol. 13, no. 2, pp. 2093–2112, 2013.[29] V. P. Kunets et al., “InSb quantum-well-based micro-hall devices: Potential for pT Detectivity,” IEEE Trans. Electron Devices, vol. 56, no. 4, pp. 683–687, 2009.[30] N. Haned and M. Missous, “Nano-tesla magnetic field magnetometry using an InGaAs-AlGaAs-GaAs 2DEG Hall sensor,” Sensors Actuators, A Phys., vol. 102, no. 3, pp. 216–222, 2003.[31] L. Huang, Z. Zhang, B. Chen, X. Ma, H. Zhong, and L. M. Peng, “Ultra-sensitive graphene Hall elements,” Appl. Phys. Lett., vol. 104, no. 18, 2014.

FEASIBILITY OF GOLD BASED HALL DEVICES FOR BIOSENSING PURPOSES

Yıl 2020, , 38 - 51, 01.06.2020
https://doi.org/10.36222/ejt.635719

Öz

Hall sensors widely dominates the field of magnetic
sensing and they are basically producing information in terms of voltage with
respect to applied field. The produced output depends on several parameters
such as carrier mobility, carrier concentration, thickness and device
geometries. In brief materials with higher mobility and less thickness provides
better candidates for such purposes. Looking at those parameters, gold-based
Hall devices may not be thought of as the best candidate for magnetic field
sensing, however, this does not suggest that it cannot be used for biosensing
purposes. Gold presents an advantage of potential label-free biosensing device
development since it can easily be functionalized for biosensing purposes. In
this study, the feasibility of gold-based Hall devices was investigated through
different fabrication techniques with and without adding separate layers
including materials such as copper, nickel and chromium. The characterization
has revealed that devices with smaller dimensions produces better output. The
results showed that using gold to fabricate Hall sensors has merit for potential
label-free biosensing purposes by designing a suitable geometry and following relevant
microfabrication techniques.

Kaynakça

  • [1] S. P. Mohanty and E. Koucianos, “Biosensors: A tutorial review,” IEEE Potentials, vol. 25, no. 2, pp. 35–40, 2006.[2] S. Song, H. Xu, and C. Fan, “Potential diagnostic applications of biosensors: Current and future directions,” Int. J. Nanomedicine, vol. 1, no. 4, pp. 433–440, 2006.[3] S. K. Vashist, “Point-of-care diagnostics: Recent advances and trends,” Biosensors, vol. 7, no. 4. 2017.[4] S. Vigneshvar, C. C. Sudhakumari, B. Senthilkumaran, and H. Prakash, “Recent advances in biosensor technology for potential applications - an overview,” Front. Bioeng. Biotechnol., vol. 4, no. FEB, p. 11, 2016.[5] B. Wang, U. Akiba, and J. I. Anzai, “Recent progress in nanomaterial-based electrochemical biosensors for cancer biomarkers: A review,” Molecules, vol. 22, no. 7, p. 1048, 2017.[6] D. Issadore et al., “Magnetic sensing technology for molecular analyses,” Lab Chip, vol. 14, no. 14, pp. 2385–2397, 2014.[7] T. Takamura, P. J. Ko, J. Sharma, R. Yukino, S. Ishizawa, and A. Sandhu, “Magnetic-particle-sensing based diagnostic protocols and applications,” Sensors (Switzerland), vol. 15, no. 6, pp. 12983–12998, 2015.[8] J. Llandro, J. J. Palfreyman, A. Ionescu, and C. H. W. Barnes, “Magnetic biosensor technologies for medical applications: A review,” Med. Biol. Eng. Comput., vol. 48, no. 10, pp. 977–998, 2010.[9] R. S. Popović, Hall effect devices, 2nd ed. Philadelphia : Institute of Physics Pub., 2004.[10] J. Izci, Davut; Hedley, “Constructing an Electronic Circuitry for Label-free Hall Biosensors,” Balk. J. Electr. Comput. Eng., vol. 7, no. 4, pp. 366–372, 2019.[11] G. Rizzi, F. W. Osterberg, A. D. Henriksen, M. Dufva, and M. F. Hansen, “On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor,” J. Magn. Magn. Mater., vol. 380, pp. 215–220, 2015.[12] M. Volmer and M. Avram, “Using permalloy based planar hall effect sensors to capture and detect superparamagnetic beads for lab on a chip applications,” J. Magn. Magn. Mater., vol. 381, pp. 481–487, 2015.[13] T. Q. Hung, S. Oh, J. R. Jeong, and C. G. Kim, “Spin-valve planar Hall sensor for single bead detection,” Sensors Actuators, A Phys., vol. 157, no. 1, pp. 42–46, 2010.[14] D. Drung et al., “Highly sensitive and easy-to-use SQUID sensors,” IEEE Trans. Appl. Supercond., vol. 17, no. 2, pp. 699–704, 2007.[15] D. Izci, C. Dale, N. Keegan, and J. Hedley, “The Construction of a Graphene Hall Effect Magnetometer,” IEEE Sens. J., vol. 18, no. 23, pp. 9534–9541, Dec. 2018.[16] A. Sandhu, Y. Kumagai, A. Lapicki, S. Sakamoto, M. Abe, and H. Handa, “High efficiency Hall effect micro-biosensor platform for detection of magnetically labeled biomolecules,” Biosens. Bioelectron., vol. 22, no. 9–10, pp. 2115–2120, 2007.[17] K. Togawa et al., “Detection of magnetically labeled DNA using pseudomorphic AlGaAs/InGaAs/GaAs heterostructure micro-Hall biosensors,” J. Appl. Phys., vol. 99, no. 8, 2006.[18] G. Mihajlović et al., “Detection of single magnetic bead for biological applications using an InAs quantum-well micro-Hall sensor,” Appl. Phys. Lett., vol. 87, no. 11, 2005.[19] H. Xu et al., “Batch-fabricated high-performance graphene Hall elements,” Sci. Rep., vol. 3, p. 1207, 2013.[20] M. Bando et al., “High sensitivity and multifunctional micro-Hall sensors fabricated using InAlSb/InAsSb/InAlSb heterostructures,” J. Appl. Phys., vol. 105, no. 7, p. 07E909, 2009.[21] O. Kazakova et al., “Detection of a micron-sized magnetic particle using insb hall sensor,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4499–4502, 2009.[22] D. Petit, D. Atkinson, S. Johnston, D. Wood, and R. P. Cowburn, “Room temperature performance of submicron bismuth Hall probes,” IEE Proc. Sci. Meas. Technol., vol. 151, no. 2, pp. 127–130, 2004.[23] B. Chen, L. Huang, X. Ma, L. Dong, Z. Zhang, and L. M. Peng, “Exploration of sensitivity limit for graphene magnetic sensors,” Carbon N. Y., vol. 94, pp. 585–589, 2015.[24] J. M. Pingarrón, P. Yáñez-Sedeño, and A. González-Cortés, “Gold nanoparticle-based electrochemical biosensors,” Electrochim. Acta, vol. 53, no. 19, pp. 5848–5866, 2008.[25] K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, “Gold nanoparticles in chemical and biological sensing,” Chem. Rev., vol. 112, no. 5, pp. 2739–2779, 2012.[26] N. Khlebtsov and L. Dykman, “Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies,” Chem. Soc. Rev., vol. 40, no. 3, pp. 1647–1671, 2011.[27] M. A. Paun, J. M. Sallese, and M. Kayal, “Hall effect sensors design, integration and behavior analysis,” J. Sens. Actuator Networks, vol. 2, no. 1, pp. 85–97, 2013.[28] M. A. Paun, J. M. Sallese, and M. Kayal, “Comparative study on the performance of five different hall effect devices,” Sensors (Switzerland), vol. 13, no. 2, pp. 2093–2112, 2013.[29] V. P. Kunets et al., “InSb quantum-well-based micro-hall devices: Potential for pT Detectivity,” IEEE Trans. Electron Devices, vol. 56, no. 4, pp. 683–687, 2009.[30] N. Haned and M. Missous, “Nano-tesla magnetic field magnetometry using an InGaAs-AlGaAs-GaAs 2DEG Hall sensor,” Sensors Actuators, A Phys., vol. 102, no. 3, pp. 216–222, 2003.[31] L. Huang, Z. Zhang, B. Chen, X. Ma, H. Zhong, and L. M. Peng, “Ultra-sensitive graphene Hall elements,” Appl. Phys. Lett., vol. 104, no. 18, 2014.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Davut İzci 0000-0001-8359-0875

Yayımlanma Tarihi 1 Haziran 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA İzci, D. (2020). FEASIBILITY OF GOLD BASED HALL DEVICES FOR BIOSENSING PURPOSES. European Journal of Technique (EJT), 10(1), 38-51. https://doi.org/10.36222/ejt.635719

All articles published by EJT are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı