Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, , 1 - 6, 01.06.2021
https://doi.org/10.36222/ejt.866718

Öz

Kaynakça

  • [1] USGS (2003). Mineral Commodity Summaries, Phosphate Rock. U.S. Geological Survey, 2003.
  • [2] Abouzeid, A.M. (2007). Upgradıng of Phosphate Ores-A Review. The Journal of Ore Dressing, 9(17), 10-32.
  • [3] Straaten, P. V., Rocks for Crops: Agrominerals of sub-Saharan AfricaRocks for Crops, Department of Land Resource Science, Canada, 2002.
  • [4] Baudet, G., The Processing of Phosphate Ores, Chron. Rch. Miner., Special Issue on Phosphates, 1988.
  • [5] Nanthakumar, B., Grimm, D., Pawlik, M. (2009). Anionic flotation of high-iron phosphate ores-Control of process water chemistry and depression of iron minerals by starch and guar gum. International Journal of Mineral Processing, 92(1-2), 49-57.
  • [6] Guimarães, R.C. Araujo, A.C. Peres, A.E.C. (2005). Reagents in igneous phosphate ores flotation. Minerals Engineering, 18(2), 199-204.
  • [7] D.P.T., Madencilik ÖİK Endüstriyel Hammaddeler Alt Komisyonu, Gübre Sanayii Hammaddeleri Çalışma Grubu Raporu Fosfat, Kükürt, Potas. T.C. Başbakanlık Devlet Planlama Teşkilatı Müsteşarlığı, Yayın No: 2437, 1996.
  • [8] Erdoğan, B. Dora, O.Ö. (1983). Bitlis masifi apatitfi demir yataklarının jeolojisi ve oluşumu. Türkiye Jeoloji Kurumu Bülteni, 26, 133-144.
  • [9] Helvacı, C., (1984a). Apatite-Rich Iron Deposits of the Avnik (Bingöl) Region, Southeastern Turkey. Economic Geology, 79(2), 354-371.
  • [10] Helvacı, C., (1984b). Bitlis Masifi Avnik (Bingöl) yöresi apatitli demir yataklarının oluşumu. Jeoloji Mühendisliği, 19, 33-51.
  • [11] Çelebi, H. (2009). Türkiye Apatitli Manyetit Yatakları: Jeolojisi, Jeokimyası ve Ekonomik Potansiyeli. İstanbul Yerbilimleri Dergisi, 22(1), 67-83.
  • [12] Luiz A.F. Barros, Eliomar E. Ferreira, Antonio E.C. Peres. (2008). Floatability of apatites and gangue minerals of an igneous phosphate ore. Minerals Engineering, 21, 994-999.
  • [13] Nunes, A.P.L., Araujo, A.C., Viana, P.R.M, Henriques, A.B. (2008) Revisiting phosphate separation from iron ores. ANNALS - 3rd International Meeting on Ironmaking and 2nd International Symposium on Iron Ore, Brazil, 265-275.
  • [14] Trahar, W.J. (1981). A rational interpretation of the role of particle size in flotation. International Journal of Mineral Processing, 8, 289-327.
  • [15] Johnson, N.W. (2010). Existing methods for process analysis, Flotation Plant Optimisation A Metallurgical Guide to Identifying and Solving Problems in Flotation Plants. Edited by C.J. Greet. Spectrum Series No 16. The Australasian Institute of Mining and Metallurgy, Chapter 2. pp. 35-64.
  • [16] Feng, D., Aldrich, C. (2004). Influence of operating parameters on the flotation of apatite. Minerals Engineering, 17(3), 453-455.
  • [17] Massola, C.P., Chaves, A.P., Lima, J.R.B., Andrade, C.F. (2009). Separation of silica from bauxite via froth flotation. Minerals Engineering, 22(4), 315-318.
  • [18] Nakhaei, F., Irannajad, M. (2018). Reagents types in flotation of iron oxide minerals: A review. Mineral Processing Extractive Metallurgy Review, 39, 89-124.

ENRICHMENT OF APATITE-BEARING IRON ORE BY MAGNETIC SEPARATION AND FLOTATION

Yıl 2021, , 1 - 6, 01.06.2021
https://doi.org/10.36222/ejt.866718

Öz

In this study, enrichment possibility of apatite-bearing iron ore sample was investigated to obtain iron and phosphate concentrates, separately. It was determined that the raw iron ore contains 35.75% Fe and 5.36 P2O5. Magnetite from the ore can be enriched with low field strength wet magnetic separators, and apatite can be enriched from magnetite residues by flotation. For this purpose, the raw ore was ground to minus 106 m size and then subjected to magnetic separation and following flotation. According to experimental result, a magnetite concentrate containing 63.55% Fe and 0.65% P205, and a phosphate concentrates containing 25.33% P2O5 and 6.45%Fe were obtained. The results show that there are still difficulties in obtaining low iron-containing apatite concentrate. It is concluded that it is difficult to separate the iron and phosphorus minerals from each other, probably due to complex mineralogical composition and poor mineral liberation of the ore.

Kaynakça

  • [1] USGS (2003). Mineral Commodity Summaries, Phosphate Rock. U.S. Geological Survey, 2003.
  • [2] Abouzeid, A.M. (2007). Upgradıng of Phosphate Ores-A Review. The Journal of Ore Dressing, 9(17), 10-32.
  • [3] Straaten, P. V., Rocks for Crops: Agrominerals of sub-Saharan AfricaRocks for Crops, Department of Land Resource Science, Canada, 2002.
  • [4] Baudet, G., The Processing of Phosphate Ores, Chron. Rch. Miner., Special Issue on Phosphates, 1988.
  • [5] Nanthakumar, B., Grimm, D., Pawlik, M. (2009). Anionic flotation of high-iron phosphate ores-Control of process water chemistry and depression of iron minerals by starch and guar gum. International Journal of Mineral Processing, 92(1-2), 49-57.
  • [6] Guimarães, R.C. Araujo, A.C. Peres, A.E.C. (2005). Reagents in igneous phosphate ores flotation. Minerals Engineering, 18(2), 199-204.
  • [7] D.P.T., Madencilik ÖİK Endüstriyel Hammaddeler Alt Komisyonu, Gübre Sanayii Hammaddeleri Çalışma Grubu Raporu Fosfat, Kükürt, Potas. T.C. Başbakanlık Devlet Planlama Teşkilatı Müsteşarlığı, Yayın No: 2437, 1996.
  • [8] Erdoğan, B. Dora, O.Ö. (1983). Bitlis masifi apatitfi demir yataklarının jeolojisi ve oluşumu. Türkiye Jeoloji Kurumu Bülteni, 26, 133-144.
  • [9] Helvacı, C., (1984a). Apatite-Rich Iron Deposits of the Avnik (Bingöl) Region, Southeastern Turkey. Economic Geology, 79(2), 354-371.
  • [10] Helvacı, C., (1984b). Bitlis Masifi Avnik (Bingöl) yöresi apatitli demir yataklarının oluşumu. Jeoloji Mühendisliği, 19, 33-51.
  • [11] Çelebi, H. (2009). Türkiye Apatitli Manyetit Yatakları: Jeolojisi, Jeokimyası ve Ekonomik Potansiyeli. İstanbul Yerbilimleri Dergisi, 22(1), 67-83.
  • [12] Luiz A.F. Barros, Eliomar E. Ferreira, Antonio E.C. Peres. (2008). Floatability of apatites and gangue minerals of an igneous phosphate ore. Minerals Engineering, 21, 994-999.
  • [13] Nunes, A.P.L., Araujo, A.C., Viana, P.R.M, Henriques, A.B. (2008) Revisiting phosphate separation from iron ores. ANNALS - 3rd International Meeting on Ironmaking and 2nd International Symposium on Iron Ore, Brazil, 265-275.
  • [14] Trahar, W.J. (1981). A rational interpretation of the role of particle size in flotation. International Journal of Mineral Processing, 8, 289-327.
  • [15] Johnson, N.W. (2010). Existing methods for process analysis, Flotation Plant Optimisation A Metallurgical Guide to Identifying and Solving Problems in Flotation Plants. Edited by C.J. Greet. Spectrum Series No 16. The Australasian Institute of Mining and Metallurgy, Chapter 2. pp. 35-64.
  • [16] Feng, D., Aldrich, C. (2004). Influence of operating parameters on the flotation of apatite. Minerals Engineering, 17(3), 453-455.
  • [17] Massola, C.P., Chaves, A.P., Lima, J.R.B., Andrade, C.F. (2009). Separation of silica from bauxite via froth flotation. Minerals Engineering, 22(4), 315-318.
  • [18] Nakhaei, F., Irannajad, M. (2018). Reagents types in flotation of iron oxide minerals: A review. Mineral Processing Extractive Metallurgy Review, 39, 89-124.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Üretim Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Mustafa Birinci 0000-0002-1954-7837

Yayımlanma Tarihi 1 Haziran 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Birinci, M. (2021). ENRICHMENT OF APATITE-BEARING IRON ORE BY MAGNETIC SEPARATION AND FLOTATION. European Journal of Technique (EJT), 11(1), 1-6. https://doi.org/10.36222/ejt.866718

All articles published by EJT are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı