Determination of Condensation and Its Effect On Insulation and Wall Envelop Layers
Yıl 2023,
Cilt: 13 Sayı: 2, 68 - 73, 31.12.2023
Selman Çağman
,
Ümit Ünver
Öz
The condensation occurs between the building envelope layers is important for both human health and the functioning of the layers. Freezing of the condensed water in cold weather region like 3rd degree-day region means another solid layer that creates freeze-thaw effect. In this study, the amount of condensation between layers for the 3 most commonly used wall types is investigated in Kütahya. The condensation phenomena is determined by Glaser Diagram Method and the condensation amount is calculated by considering climatic data. Wall 3 gives the best result and that one has 0,001696833 kg/h.m2 at 0 ºC, it is 0,002142743 kg/h.m2 at -21 ºC condensed water amount due to low outside temperature.
Kaynakça
- [1] N. Buckley, G. Mills, C. Reinhart, and Z. M. Berzolla, “Using urban building energy modelling (UBEM) to support the new European Union’s Green Deal: Case study of Dublin Ireland”, Energy and Buildings, c. 247, p. 111-115, 2021, doi: 10.1016/j.enbuild.2021.111115, 2021.
- [2] H. Erbıyık, T. Catal, S. Durukan, D. G. Topaloglu, and Ü. Unver, “Assessment of Yalova University Campus According to LEED V.4 Certification System”, Environmental Research and Technology, c. 4, January, p. 18–28, 2021, doi: 10.35208/ert.812339.
- [3] A. Bahadıroğlu, A. Y. Koç, E. Parlak, N. Larsson, W. Kujawski, and U. Unver, “Sustainable building evaluation: a case study”, Energy Sources, Part A: Recovery, Utilization and Environmental Effects, c. 44, sayı 2, ss. 3149–3163, 2022, doi: 10.1080/15567036.2022.2061646.
- [4] U. Unver, E. Adiguzel, E. Adiguzel, S. Civi, and K. Roshanei, “Application of Thermal Insulation in Buildings by Climate Zones in Turkey”, Journal of Advanced Engineering Studies and Technologies, c. 1, sayı 2, ss. 171–187, 2020.
- [5] Y. Choi, E. S. Jeong, J. H., Mun, K. H. Yang, S. J. Lee, and H. Lim, “Thermal performance and condensation analysis of insulated concrete panels using a thermal-meta structure”, Applied Thermal Engineering, 230, 120761. https://doi.org/10.1016/j.applthermaleng.2023.120761
- [6] R. Galvin, “Solving mould and condensation problems: A dehumidifier trial in a suburban house in Britain”, Energy and Buildings, c. 42, sayı 11, ss. 2118–2123, doi: 10.1016/j.enbuild.2010.07.00, 2010.
- [7] A. Torres-Rivas, M. Palumbo, A. Haddad, L. F. Cabeza, L. Jiménez, and D. Boer, “ Multi-objective optimisation of bio-based thermal insulation materials in building envelopes considering condensation risk”, Applied Energy, c. 224, p. 602–614, 2018, doi: 10.1016/j.apenergy.2018.04.079, September, 2017.
- [8] P. L. Simona, P. Spiru, and I. V. Ion, “Increasing the energy efficiency of buildings by thermal insulation”, Energy Procedia, c. 128, p. 393–399, doi: 10.1016/j.egypro.2017.09.044, 2017.
- [9] N. Belayachi, D. Hoxha, and M. Slaimia, “Impact of accelerated climatic aging on the behavior of gypsum plaster-straw material for building thermal insulation”, Construction and Building Materials, vol. 125, pp. 912–918, 2016.
- [10] C. Hatipoglu, E. Tosun, Ş. Türkmen, H. Atalay, and Ü. Ünver, “Examination of Internal Condensation in Composite Walls for Different Wall Types”, 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech), Split / Bol, Croatia, 2022, pp. 1-6, doi: 10.23919/SpliTech55088.2022.9854319.
- [11] L. Li, D. Li, X. Zhu, K. Zhang, and Y. Mu, “Freeze-thaw resistance of thermal insulating materials used in cold regions engineering: A state-of-the-art review”, Geofluids, –11. https://doi.org/10.1155/2022/9015055, 2022.
- [12] F. Niu, H. Jiang, W. Su, W. Jiang, and J. He, “Performance degradation of polymer material under freeze-thaw cycles: a case study of extruded polystyrene board, Polymer Testing”, vol. 96, pp. 107067-107068, 2021.
- [13] A. H. Bademlioğlu, A. S. Canbolat, ve Ö. Kaynaklı, “Bi̇na Dış Duvarlarında yoğuşma di̇kkate Alınarak Gerekli̇ Yalıtım Kalınlığının Belirlenmesi: Bi̇tli̇s İli̇ i̇çi̇n örnek çalışma”, Uludağ University Journal of The Faculty of Engineering, 23(3), 333–340. https://doi.org/10.17482/uumfd.487773, 2018.
- [14] X. Shen, L. Li, W. Cui, and Y. Feng, “Thermal and moisture performance of external thermal insulation system with periodic freezing-thawing”, Applied Thermal Engineering, 181, 115920. https://doi.org/10.1016/j.applthermaleng.2020.115920, 2020,
- [15] Z. Liu, J. Jiang, X. Jin, Y. Wang, and Y. Zhang, “Experimental and numerical investigations on the inhibition of freeze–thaw damage of cement-based materials by a methyl laurate/diatomite microcapsule phase change material”, Journal of Energy Storage, 68, 107665. https://doi.org/10.1016/j.est.2023.107665, 2023,
- [16] J. Nilimaa, and Z. Vasiola, “An Overview of Smart Materials and Technologies for Concrete Construction in Cold Weather", Eng 4, no. 2: 1550-1580. https://doi.org/10.3390/eng4020089, 2023.
- [17] V. Kočí, J. Maděra, and R. Černý, “Exterior thermal insulation systems for AAC building envelopes: Computational Analysis aimed at increasing service life”, Energy and Buildings, 47, 84–90. https://doi.org/10.1016/j.enbuild.2011.11.030, 2012.
- [18] F. Kong, and Q. Zhang, "Effect of heat and mass coupled transfer combined with freezing process on building exterior envelope”, Energy and Buildings, 62, 486–495. https://doi.org/10.1016/j.enbuild.2013.03.012, 2013.
- [19] D. Zhong, S. Wang, Y. Gao, L. Wang, and K. Feng, “Experimental study on freeze-thaw resistance of modified magnesium oxychloride cement foam concrete”, Journal of Physics: Conference Series, 1885(3), 032009. https://doi.org/10.1088/1742-6596/1885/3/032009, 2021.
- [20] M. Kayfeci, A. Keçebaş, and E. Gedik, “Determination of optimum insulation thickness of external walls with two different methods in cooling applications” Applied Thermal Engineering, 50 (1), 217–224. https://doi.org/10.1016/j.applthermaleng.2012.06.031, 2013.
- [21] Y. Sun, Z. Zhao, and X. Li, “A novel aerogels/porous Si3N4 ceramics composite with high strength and improved thermal insulation property,” Ceramics International, v. 44, no. 5, pp. 5233–5237, 2018.
- [22] S. Deng, and H. Zhao, “A Potential Novel Building Insulation Material under Carbon Peaking and Carbon Neutrality Goals: Fully Biomass-Based Aerogel with Enhanced Flame Retardancy", Science China Press, 2022.
- [23] A. Lakatos, “Thermal insulation capability of nanostructured insulations and their combination as hybrid insulation systems", Case Studies in Thermal Engineering, v. 41, 102630, ISSN 2214-157X, https://doi.org/10.1016/j.csite.2022.102630, 2023.
- [24] A. E. Kilicaslan, and H. Kus, “Evaluation of the hygrothermal performance of external thermal insulation applications on the outer walls of existing buildings”, Journal of the Faculty of Engineering and Architecture of Gazi University, c. 36, sayı 1, ss. 89–103, doi: 10.17341/gazimmfd.634585, 2021.
- [25] A. H. Bademlioglu, “Duvarlarda Yoğuşma Dikkate Alınarak Yalıtım Kalınlığının Belirlenmesi”, Bursa Uludağ, 2014.
- [26] A. H. Bademlioglu, A. S. Canbolat, ve Ö. Kaynaklı, “Bina Dış Duvarlarında Yoğuşma Di̇kkate Alınarak Gerekli̇ Yalıtım Kalınlığının Beli̇rlenmesi̇ Bi̇tli̇s İli İçi̇n Örnek Çalışma”, Uludağ University Journal of The Faculty of Engineering, c. 23, sayı 3, ss. 333–340, doi: 10.17482/uumfd.487773, 2018.
- [27] F. Kong, and H. Wang, "Heat and mass coupled transfer combined with freezing process in building materials: Modeling and experimental verification”, Energy and Buildings, c. 43, sayı 10, ss. 2850–2859, 2011, doi: 10.1016/j.enbuild.2011.07.004, 2011.
- [28] F. Kong, and Q. Zhang, “Effect of heat and mass coupled transfer combined with freezing process on building exterior envelope”, Energy and Buildings, c. 62, ss. 486–495, doi: 10.1016/j.enbuild.2013.03.012, 2013.
- [29] U.S. Environmental Protection Agency, “Moisture Control Guidance for Building Design, Construction and Maintenance”, December, p. 144., 2013.
- [30] V. J. Kočí, J. Maděra, and R. Černý, “Exterior thermal insulation systems for AAC building envelopes: Computational analysis aimed at increasing service life”, Energy and Buildings, c. 47, ss. 84–90, doi: 10.1016/j.enbuild.2011.11.030, 2012.
- [31] V. Kočí, “Service life assessment of historical building envelopes constructed using different types of sandstone: A computational analysis based on experimental input data”, Scientific World Journal, doi: 10.1155/2014/802509, 2014.
- [32] İzocam-Türk Standardı, Açıklamalı ve Örneklerle ‘TS 825 - Binalarda Isı Yalıtım Kuralları’ Standardı, Https://Www.Izocam.Com.Tr/, 2013, [Çevrimiçi]. Available at: https://birimler.dpu.edu.tr/app/views/panel/ckfinder/userfiles/74/files/oerbas/ts_825.pdf.
- [33] M. Özel, and N. İ. Beyazıt, “Yalıtımın duvar içerisindeki farklı konumlarına göre yoğuşma analizi”, DÜMF Mühendislik Dergisi, c. 9, sayı 2, ss. 785–794, [Çevrimiçi]. Available at: http://dergipark.gov.tr/dumf/issue/38874/458270, 2018.
- [34] L. Bellia, and F. Minichiello, “A simple evaluator of building envelope moisture condensation according to an European Standard”, Building and Environment, c. 38, issue 3, p. 457–468, doi: 10.1016/S0360-1323(02)00060-4, 2003.
- [35] I. Nesrin, “Investigation of The Effect of Insulation on Condensation (In Turkish)”, M.Sc. Thesis, Firat Univresity, Applied Science Institute. Elazığ, 2019.
Yıl 2023,
Cilt: 13 Sayı: 2, 68 - 73, 31.12.2023
Selman Çağman
,
Ümit Ünver
Kaynakça
- [1] N. Buckley, G. Mills, C. Reinhart, and Z. M. Berzolla, “Using urban building energy modelling (UBEM) to support the new European Union’s Green Deal: Case study of Dublin Ireland”, Energy and Buildings, c. 247, p. 111-115, 2021, doi: 10.1016/j.enbuild.2021.111115, 2021.
- [2] H. Erbıyık, T. Catal, S. Durukan, D. G. Topaloglu, and Ü. Unver, “Assessment of Yalova University Campus According to LEED V.4 Certification System”, Environmental Research and Technology, c. 4, January, p. 18–28, 2021, doi: 10.35208/ert.812339.
- [3] A. Bahadıroğlu, A. Y. Koç, E. Parlak, N. Larsson, W. Kujawski, and U. Unver, “Sustainable building evaluation: a case study”, Energy Sources, Part A: Recovery, Utilization and Environmental Effects, c. 44, sayı 2, ss. 3149–3163, 2022, doi: 10.1080/15567036.2022.2061646.
- [4] U. Unver, E. Adiguzel, E. Adiguzel, S. Civi, and K. Roshanei, “Application of Thermal Insulation in Buildings by Climate Zones in Turkey”, Journal of Advanced Engineering Studies and Technologies, c. 1, sayı 2, ss. 171–187, 2020.
- [5] Y. Choi, E. S. Jeong, J. H., Mun, K. H. Yang, S. J. Lee, and H. Lim, “Thermal performance and condensation analysis of insulated concrete panels using a thermal-meta structure”, Applied Thermal Engineering, 230, 120761. https://doi.org/10.1016/j.applthermaleng.2023.120761
- [6] R. Galvin, “Solving mould and condensation problems: A dehumidifier trial in a suburban house in Britain”, Energy and Buildings, c. 42, sayı 11, ss. 2118–2123, doi: 10.1016/j.enbuild.2010.07.00, 2010.
- [7] A. Torres-Rivas, M. Palumbo, A. Haddad, L. F. Cabeza, L. Jiménez, and D. Boer, “ Multi-objective optimisation of bio-based thermal insulation materials in building envelopes considering condensation risk”, Applied Energy, c. 224, p. 602–614, 2018, doi: 10.1016/j.apenergy.2018.04.079, September, 2017.
- [8] P. L. Simona, P. Spiru, and I. V. Ion, “Increasing the energy efficiency of buildings by thermal insulation”, Energy Procedia, c. 128, p. 393–399, doi: 10.1016/j.egypro.2017.09.044, 2017.
- [9] N. Belayachi, D. Hoxha, and M. Slaimia, “Impact of accelerated climatic aging on the behavior of gypsum plaster-straw material for building thermal insulation”, Construction and Building Materials, vol. 125, pp. 912–918, 2016.
- [10] C. Hatipoglu, E. Tosun, Ş. Türkmen, H. Atalay, and Ü. Ünver, “Examination of Internal Condensation in Composite Walls for Different Wall Types”, 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech), Split / Bol, Croatia, 2022, pp. 1-6, doi: 10.23919/SpliTech55088.2022.9854319.
- [11] L. Li, D. Li, X. Zhu, K. Zhang, and Y. Mu, “Freeze-thaw resistance of thermal insulating materials used in cold regions engineering: A state-of-the-art review”, Geofluids, –11. https://doi.org/10.1155/2022/9015055, 2022.
- [12] F. Niu, H. Jiang, W. Su, W. Jiang, and J. He, “Performance degradation of polymer material under freeze-thaw cycles: a case study of extruded polystyrene board, Polymer Testing”, vol. 96, pp. 107067-107068, 2021.
- [13] A. H. Bademlioğlu, A. S. Canbolat, ve Ö. Kaynaklı, “Bi̇na Dış Duvarlarında yoğuşma di̇kkate Alınarak Gerekli̇ Yalıtım Kalınlığının Belirlenmesi: Bi̇tli̇s İli̇ i̇çi̇n örnek çalışma”, Uludağ University Journal of The Faculty of Engineering, 23(3), 333–340. https://doi.org/10.17482/uumfd.487773, 2018.
- [14] X. Shen, L. Li, W. Cui, and Y. Feng, “Thermal and moisture performance of external thermal insulation system with periodic freezing-thawing”, Applied Thermal Engineering, 181, 115920. https://doi.org/10.1016/j.applthermaleng.2020.115920, 2020,
- [15] Z. Liu, J. Jiang, X. Jin, Y. Wang, and Y. Zhang, “Experimental and numerical investigations on the inhibition of freeze–thaw damage of cement-based materials by a methyl laurate/diatomite microcapsule phase change material”, Journal of Energy Storage, 68, 107665. https://doi.org/10.1016/j.est.2023.107665, 2023,
- [16] J. Nilimaa, and Z. Vasiola, “An Overview of Smart Materials and Technologies for Concrete Construction in Cold Weather", Eng 4, no. 2: 1550-1580. https://doi.org/10.3390/eng4020089, 2023.
- [17] V. Kočí, J. Maděra, and R. Černý, “Exterior thermal insulation systems for AAC building envelopes: Computational Analysis aimed at increasing service life”, Energy and Buildings, 47, 84–90. https://doi.org/10.1016/j.enbuild.2011.11.030, 2012.
- [18] F. Kong, and Q. Zhang, "Effect of heat and mass coupled transfer combined with freezing process on building exterior envelope”, Energy and Buildings, 62, 486–495. https://doi.org/10.1016/j.enbuild.2013.03.012, 2013.
- [19] D. Zhong, S. Wang, Y. Gao, L. Wang, and K. Feng, “Experimental study on freeze-thaw resistance of modified magnesium oxychloride cement foam concrete”, Journal of Physics: Conference Series, 1885(3), 032009. https://doi.org/10.1088/1742-6596/1885/3/032009, 2021.
- [20] M. Kayfeci, A. Keçebaş, and E. Gedik, “Determination of optimum insulation thickness of external walls with two different methods in cooling applications” Applied Thermal Engineering, 50 (1), 217–224. https://doi.org/10.1016/j.applthermaleng.2012.06.031, 2013.
- [21] Y. Sun, Z. Zhao, and X. Li, “A novel aerogels/porous Si3N4 ceramics composite with high strength and improved thermal insulation property,” Ceramics International, v. 44, no. 5, pp. 5233–5237, 2018.
- [22] S. Deng, and H. Zhao, “A Potential Novel Building Insulation Material under Carbon Peaking and Carbon Neutrality Goals: Fully Biomass-Based Aerogel with Enhanced Flame Retardancy", Science China Press, 2022.
- [23] A. Lakatos, “Thermal insulation capability of nanostructured insulations and their combination as hybrid insulation systems", Case Studies in Thermal Engineering, v. 41, 102630, ISSN 2214-157X, https://doi.org/10.1016/j.csite.2022.102630, 2023.
- [24] A. E. Kilicaslan, and H. Kus, “Evaluation of the hygrothermal performance of external thermal insulation applications on the outer walls of existing buildings”, Journal of the Faculty of Engineering and Architecture of Gazi University, c. 36, sayı 1, ss. 89–103, doi: 10.17341/gazimmfd.634585, 2021.
- [25] A. H. Bademlioglu, “Duvarlarda Yoğuşma Dikkate Alınarak Yalıtım Kalınlığının Belirlenmesi”, Bursa Uludağ, 2014.
- [26] A. H. Bademlioglu, A. S. Canbolat, ve Ö. Kaynaklı, “Bina Dış Duvarlarında Yoğuşma Di̇kkate Alınarak Gerekli̇ Yalıtım Kalınlığının Beli̇rlenmesi̇ Bi̇tli̇s İli İçi̇n Örnek Çalışma”, Uludağ University Journal of The Faculty of Engineering, c. 23, sayı 3, ss. 333–340, doi: 10.17482/uumfd.487773, 2018.
- [27] F. Kong, and H. Wang, "Heat and mass coupled transfer combined with freezing process in building materials: Modeling and experimental verification”, Energy and Buildings, c. 43, sayı 10, ss. 2850–2859, 2011, doi: 10.1016/j.enbuild.2011.07.004, 2011.
- [28] F. Kong, and Q. Zhang, “Effect of heat and mass coupled transfer combined with freezing process on building exterior envelope”, Energy and Buildings, c. 62, ss. 486–495, doi: 10.1016/j.enbuild.2013.03.012, 2013.
- [29] U.S. Environmental Protection Agency, “Moisture Control Guidance for Building Design, Construction and Maintenance”, December, p. 144., 2013.
- [30] V. J. Kočí, J. Maděra, and R. Černý, “Exterior thermal insulation systems for AAC building envelopes: Computational analysis aimed at increasing service life”, Energy and Buildings, c. 47, ss. 84–90, doi: 10.1016/j.enbuild.2011.11.030, 2012.
- [31] V. Kočí, “Service life assessment of historical building envelopes constructed using different types of sandstone: A computational analysis based on experimental input data”, Scientific World Journal, doi: 10.1155/2014/802509, 2014.
- [32] İzocam-Türk Standardı, Açıklamalı ve Örneklerle ‘TS 825 - Binalarda Isı Yalıtım Kuralları’ Standardı, Https://Www.Izocam.Com.Tr/, 2013, [Çevrimiçi]. Available at: https://birimler.dpu.edu.tr/app/views/panel/ckfinder/userfiles/74/files/oerbas/ts_825.pdf.
- [33] M. Özel, and N. İ. Beyazıt, “Yalıtımın duvar içerisindeki farklı konumlarına göre yoğuşma analizi”, DÜMF Mühendislik Dergisi, c. 9, sayı 2, ss. 785–794, [Çevrimiçi]. Available at: http://dergipark.gov.tr/dumf/issue/38874/458270, 2018.
- [34] L. Bellia, and F. Minichiello, “A simple evaluator of building envelope moisture condensation according to an European Standard”, Building and Environment, c. 38, issue 3, p. 457–468, doi: 10.1016/S0360-1323(02)00060-4, 2003.
- [35] I. Nesrin, “Investigation of The Effect of Insulation on Condensation (In Turkish)”, M.Sc. Thesis, Firat Univresity, Applied Science Institute. Elazığ, 2019.