Konferans Bildirisi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 8 Sayı: 1, 71 - 77, 30.06.2018

Öz

Kaynakça

  • [1] IEA., Key World Energy Statistics, IEA: https://www.iea.org/publications., (Ziyaret Edilme Tarihi, 24.03.2017).
  • [2] GWEC, "Global Wind Report 2016", http://www.gwec.net/publications, 2016.
  • [3] Baseer, M. A., Meyer, J. P., Rehman, S. and Alam, M. M., "Wind power characteristics of seven data collection sites in Jubail, Saudi Arabia using Weibull parameters", Renewable Energy, 102: 35-49 (2017).
  • [4] Bassyouni, M, Gutub, S. A, Javaid U., Awais, M., Rehman, S., Hamid SS, Abdel-Aziz M. H., Abouel-Kasem, A. and Shafeek, H. "Assessment and analysis of wind power resource using weibull parameters", Energy Exploration & Exploitation, 33(1): 105-22 (2015).
  • [5] Akdağ, S. A. and Güler, Ö., "Weibull Dağılım Parametrelerini Belirleme Metodlarının Karşılaştırılması", VII. Ulusal Temiz Enerji Sempozyumu, (2008).
  • [6] Akdağ, S. A., and Güler, Ö., "Wind characteristics analyses and determination of appropriate wind turbine for Amasra—Black Sea region, Turkey", International Journal of Green Energy, 7(4): 422-433 (2010).
  • [7] Kantar, Y. M., Kurban, M. and Hocaoglu, F. O., "Comparison of six different parameter estimation methods in wind power applications", Scientific Research and Essays, 6(32): 6594-6604 (2011).
  • [8] Kurban, M., Hocaoğlu, F. O. and Kantar, Y. M., "The comparative analysis of two different statistical distributions used to estimate the wind energy potential", Pamukkale University Journal of Engineering Sciences, 13(1):103-9 (2007).
  • [9] Celik, A. N., "A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey", Renewable Energy, 29(4): 593-604 (2004).
  • [10] Dokur, E., and Kurban, M., "Wind Speed Potential Analysis Based on Weibull Distribution", Balkan Journal of Electrical and Computer Engineering, 3(4):231-235 (2015).
  • [11] Garcia, A., Torres, J. L., Prieto, E. and De Francisco A., "Fitting wind speed distributions: a case study", Solar Energy, 62(2): 139-144 (1998).
  • [12] Justus, C.G., Hargraves, W. R. and Yalcin, A., "Nationwide assessment of potential output from wind-powered generators" Journal of Applied Meteorology 15(7): 673-678 (1976).
  • [13] Luna, R. E. and Church, H. W., "Estimation of long-term concentrations using a “universal” wind speed distribution", Journal of Applied Meteorology, 13(8): 910-916 (1974).
  • [14] Kiss, P. and Jánosi, I. M., Comprehensive empirical analysis of ERA-40 surface wind speed distribution over Europe", Energy Conversion and Management, 49(8): 2142-2151 (2008).
  • [15] Brano, V. L., Orioli, A., Ciulla, G. and Culotta, S., "Quality of wind speed fitting distributions for the urban area of Palermo, Italy", Renewable Energy, 36(3): 1026-1039 (2011).
  • [16] Bardsley, W. E., "Note on the use of the inverse Gaussian distribution for wind energy applications" Journal of Applied Meteorology, 19(9): 1126-1130 (1980).
  • [17] Morgan, E. C., Lackner, M., Vogel, R. M. and Baise, L.G., "Probability distributions for offshore wind speeds", Energy Conversion and Management, 52(1): 15-26 (2011).
  • [18] Kaminsky, F. C., "Four probability densities/log-normal, gamma, Weibull, and Rayleigh/and their application to modelling average hourly wind speed", In International Solar Energy Society Annual Meeting, 19-6 (1977).
  • [19] Sherlock, R.H., "Analyzing winds for frequency and duration", In On Atmospheric Pollution American Meteorological Society, 42-49 (1951).
  • [20] Kollu, R., Rayapudi, S. R., Narasimham, S. V. L. and Pakkurthi, K. M. "Mixture probability distribution functions to model wind speed distributions" International Journal of Energy and Environmental Engineering, 3(1): 27 (2012).
  • [21] Jaramillo, O. A. and Borja, M. A., "Wind speed analysis in La Ventosa, Mexico: a bimodal probability distribution case", Renewable Energy, 29(10):1613-1630 (2004).
  • [22] Takle, E. S. and Brown, J. M., "Note on the use of Weibull statistics to characterize wind-speed data", Journal of Applied Meteorology, 17(4): 556-559(1978).
  • [23] Zaharim, A., Najid, S. K., Razali, A. M. and Sopian, K., "Analyzing Malaysian wind speed data using statistical distribution", In Proceedings of the 4th IASME/WSEAS International Conference on Energy & Environment, Cambridge, UK, (2009).
  • [24] Carta, J. A., Ramirez, P. and Velazquez, S., "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands", Renewable and Sustainable Energy Reviews, 13(5): 933-955 (2009).
  • [25] Van, D. A. L, Meyer D. F and Malet, L. M., "The use of the Weibull three-parameter model for estimating mean wind power densities", Journal of Applied Meteorology, 19(7): 819-825 (1980).
  • [26] Sharma, K. and Ahmed, M. R., "Wind energy resource assessment for the Fiji Islands: Kadavu Island and Suva Peninsula", Renewable Energy, 89: 168-180 (2016).
  • [27] Pishgar-Komleh, S. H., Keyhani, A. and Sefeedpari, P., "Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran)", Renewable and Sustainable Energy Reviews, 42:313-322 (2015).
  • [28] Akgül, F. G., Şenoğlu, B. and Arslan, T. "An alternative distribution to Weibull for modeling the wind speed data: Inverse Weibull distribution", Energy Conversion and Management, 114: 234-240 (2016)
  • [29] Ceyhan S. ve Çivi G., "Bazı özel kropina uzayları ve kropina metrik dönüşümleri",Türkiye Alim Kitapları, (2014).
  • [30] Dokur, E., Ceyhan, S. and Kurban, M., "Finsler Geometry for Two-Parameter Weibull Distribution", Mathematical Problems in Engineering, (2017).

Rüzgar Enerji Dönüşüm Sistemlerinde Finsler Geometrisi Tabanlı Yeni Bir Yaklaşım

Yıl 2018, Cilt: 8 Sayı: 1, 71 - 77, 30.06.2018

Öz

Günümüzde artan enerji ihtiyacına paralel olarak üretilen enerjinin
temiz ve sürdürülebilir olma hedefi, yenilenebilir enerji sistemlerine olan
yönelimi hızla artırmıştır. Bu çalışma, yenilebilir enerji kaynakları arasında
yer alan rüzgar enerji dönüşüm sistemleri alanındaki özgün yaklaşımlı Finsler
geometri tabanlı modellemeleri içermektedir. Rüzgar enerji dönüşüm
sistemlerinde rüzgar hızı modellemesi büyük öneme sahiptir. Bu çalışma kapsamında
da, 2-boyutlu Finsler uzaylarının metrik fonksiyonu ve bunlara ilişkin
geodezikler, rüzgar hızı modellemesinde sıklıkla kullanılan iki parametreli
Weibull dağılımı için elde edilmiştir. Weibull olasılık dağılım fonksiyonuna
Finsler geometrisi ile yeni ve farklı bir yaklaşım getirilerek, 2-boyutlu
Finsler uzayında metrik tanımlaması yapılmıştır.  Bu özgün yaklaşım ile iki parametreli yeni
bir dağılım fonksiyonu geliştirilip asimetrik yapılarda daha hassas
modellemelerin oluşturulabilmesi sağlanmıştır. Finsler geometri tabanlı yeni
yaklaşım,  rüzgar hızı modellemesinde sıklıkla
kullanılan Rayleigh ve Weibull dağılımları ile karşılaştırmalı olarak analiz edilmiştir.

Kaynakça

  • [1] IEA., Key World Energy Statistics, IEA: https://www.iea.org/publications., (Ziyaret Edilme Tarihi, 24.03.2017).
  • [2] GWEC, "Global Wind Report 2016", http://www.gwec.net/publications, 2016.
  • [3] Baseer, M. A., Meyer, J. P., Rehman, S. and Alam, M. M., "Wind power characteristics of seven data collection sites in Jubail, Saudi Arabia using Weibull parameters", Renewable Energy, 102: 35-49 (2017).
  • [4] Bassyouni, M, Gutub, S. A, Javaid U., Awais, M., Rehman, S., Hamid SS, Abdel-Aziz M. H., Abouel-Kasem, A. and Shafeek, H. "Assessment and analysis of wind power resource using weibull parameters", Energy Exploration & Exploitation, 33(1): 105-22 (2015).
  • [5] Akdağ, S. A. and Güler, Ö., "Weibull Dağılım Parametrelerini Belirleme Metodlarının Karşılaştırılması", VII. Ulusal Temiz Enerji Sempozyumu, (2008).
  • [6] Akdağ, S. A., and Güler, Ö., "Wind characteristics analyses and determination of appropriate wind turbine for Amasra—Black Sea region, Turkey", International Journal of Green Energy, 7(4): 422-433 (2010).
  • [7] Kantar, Y. M., Kurban, M. and Hocaoglu, F. O., "Comparison of six different parameter estimation methods in wind power applications", Scientific Research and Essays, 6(32): 6594-6604 (2011).
  • [8] Kurban, M., Hocaoğlu, F. O. and Kantar, Y. M., "The comparative analysis of two different statistical distributions used to estimate the wind energy potential", Pamukkale University Journal of Engineering Sciences, 13(1):103-9 (2007).
  • [9] Celik, A. N., "A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey", Renewable Energy, 29(4): 593-604 (2004).
  • [10] Dokur, E., and Kurban, M., "Wind Speed Potential Analysis Based on Weibull Distribution", Balkan Journal of Electrical and Computer Engineering, 3(4):231-235 (2015).
  • [11] Garcia, A., Torres, J. L., Prieto, E. and De Francisco A., "Fitting wind speed distributions: a case study", Solar Energy, 62(2): 139-144 (1998).
  • [12] Justus, C.G., Hargraves, W. R. and Yalcin, A., "Nationwide assessment of potential output from wind-powered generators" Journal of Applied Meteorology 15(7): 673-678 (1976).
  • [13] Luna, R. E. and Church, H. W., "Estimation of long-term concentrations using a “universal” wind speed distribution", Journal of Applied Meteorology, 13(8): 910-916 (1974).
  • [14] Kiss, P. and Jánosi, I. M., Comprehensive empirical analysis of ERA-40 surface wind speed distribution over Europe", Energy Conversion and Management, 49(8): 2142-2151 (2008).
  • [15] Brano, V. L., Orioli, A., Ciulla, G. and Culotta, S., "Quality of wind speed fitting distributions for the urban area of Palermo, Italy", Renewable Energy, 36(3): 1026-1039 (2011).
  • [16] Bardsley, W. E., "Note on the use of the inverse Gaussian distribution for wind energy applications" Journal of Applied Meteorology, 19(9): 1126-1130 (1980).
  • [17] Morgan, E. C., Lackner, M., Vogel, R. M. and Baise, L.G., "Probability distributions for offshore wind speeds", Energy Conversion and Management, 52(1): 15-26 (2011).
  • [18] Kaminsky, F. C., "Four probability densities/log-normal, gamma, Weibull, and Rayleigh/and their application to modelling average hourly wind speed", In International Solar Energy Society Annual Meeting, 19-6 (1977).
  • [19] Sherlock, R.H., "Analyzing winds for frequency and duration", In On Atmospheric Pollution American Meteorological Society, 42-49 (1951).
  • [20] Kollu, R., Rayapudi, S. R., Narasimham, S. V. L. and Pakkurthi, K. M. "Mixture probability distribution functions to model wind speed distributions" International Journal of Energy and Environmental Engineering, 3(1): 27 (2012).
  • [21] Jaramillo, O. A. and Borja, M. A., "Wind speed analysis in La Ventosa, Mexico: a bimodal probability distribution case", Renewable Energy, 29(10):1613-1630 (2004).
  • [22] Takle, E. S. and Brown, J. M., "Note on the use of Weibull statistics to characterize wind-speed data", Journal of Applied Meteorology, 17(4): 556-559(1978).
  • [23] Zaharim, A., Najid, S. K., Razali, A. M. and Sopian, K., "Analyzing Malaysian wind speed data using statistical distribution", In Proceedings of the 4th IASME/WSEAS International Conference on Energy & Environment, Cambridge, UK, (2009).
  • [24] Carta, J. A., Ramirez, P. and Velazquez, S., "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands", Renewable and Sustainable Energy Reviews, 13(5): 933-955 (2009).
  • [25] Van, D. A. L, Meyer D. F and Malet, L. M., "The use of the Weibull three-parameter model for estimating mean wind power densities", Journal of Applied Meteorology, 19(7): 819-825 (1980).
  • [26] Sharma, K. and Ahmed, M. R., "Wind energy resource assessment for the Fiji Islands: Kadavu Island and Suva Peninsula", Renewable Energy, 89: 168-180 (2016).
  • [27] Pishgar-Komleh, S. H., Keyhani, A. and Sefeedpari, P., "Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran)", Renewable and Sustainable Energy Reviews, 42:313-322 (2015).
  • [28] Akgül, F. G., Şenoğlu, B. and Arslan, T. "An alternative distribution to Weibull for modeling the wind speed data: Inverse Weibull distribution", Energy Conversion and Management, 114: 234-240 (2016)
  • [29] Ceyhan S. ve Çivi G., "Bazı özel kropina uzayları ve kropina metrik dönüşümleri",Türkiye Alim Kitapları, (2014).
  • [30] Dokur, E., Ceyhan, S. and Kurban, M., "Finsler Geometry for Two-Parameter Weibull Distribution", Mathematical Problems in Engineering, (2017).
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Enerjisi Dönüşümü Özel Sayısı
Yazarlar

Emrah Dokur

Salim Ceyhan

Mehmet Kurban

Yayımlanma Tarihi 30 Haziran 2018
Gönderilme Tarihi 19 Şubat 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 8 Sayı: 1

Kaynak Göster

APA Dokur, E., Ceyhan, S., & Kurban, M. (2018). Rüzgar Enerji Dönüşüm Sistemlerinde Finsler Geometrisi Tabanlı Yeni Bir Yaklaşım. EMO Bilimsel Dergi, 8(1), 71-77.
AMA Dokur E, Ceyhan S, Kurban M. Rüzgar Enerji Dönüşüm Sistemlerinde Finsler Geometrisi Tabanlı Yeni Bir Yaklaşım. EMO Bilimsel Dergi. Haziran 2018;8(1):71-77.
Chicago Dokur, Emrah, Salim Ceyhan, ve Mehmet Kurban. “Rüzgar Enerji Dönüşüm Sistemlerinde Finsler Geometrisi Tabanlı Yeni Bir Yaklaşım”. EMO Bilimsel Dergi 8, sy. 1 (Haziran 2018): 71-77.
EndNote Dokur E, Ceyhan S, Kurban M (01 Haziran 2018) Rüzgar Enerji Dönüşüm Sistemlerinde Finsler Geometrisi Tabanlı Yeni Bir Yaklaşım. EMO Bilimsel Dergi 8 1 71–77.
IEEE E. Dokur, S. Ceyhan, ve M. Kurban, “Rüzgar Enerji Dönüşüm Sistemlerinde Finsler Geometrisi Tabanlı Yeni Bir Yaklaşım”, EMO Bilimsel Dergi, c. 8, sy. 1, ss. 71–77, 2018.
ISNAD Dokur, Emrah vd. “Rüzgar Enerji Dönüşüm Sistemlerinde Finsler Geometrisi Tabanlı Yeni Bir Yaklaşım”. EMO Bilimsel Dergi 8/1 (Haziran 2018), 71-77.
JAMA Dokur E, Ceyhan S, Kurban M. Rüzgar Enerji Dönüşüm Sistemlerinde Finsler Geometrisi Tabanlı Yeni Bir Yaklaşım. EMO Bilimsel Dergi. 2018;8:71–77.
MLA Dokur, Emrah vd. “Rüzgar Enerji Dönüşüm Sistemlerinde Finsler Geometrisi Tabanlı Yeni Bir Yaklaşım”. EMO Bilimsel Dergi, c. 8, sy. 1, 2018, ss. 71-77.
Vancouver Dokur E, Ceyhan S, Kurban M. Rüzgar Enerji Dönüşüm Sistemlerinde Finsler Geometrisi Tabanlı Yeni Bir Yaklaşım. EMO Bilimsel Dergi. 2018;8(1):71-7.

EMO BİLİMSEL DERGİ
Elektrik, Elektronik, Bilgisayar, Biyomedikal, Kontrol Mühendisliği Bilimsel Hakemli Dergisi
TMMOB ELEKTRİK MÜHENDİSLERİ ODASI 
IHLAMUR SOKAK NO:10 KIZILAY/ANKARA
TEL: +90 (312) 425 32 72 (PBX) - FAKS: +90 (312) 417 38 18
bilimseldergi@emo.org.tr