Araştırma Makalesi
BibTex RIS Kaynak Göster

Güneş Enerjisinin Kısa-Dönem Tahmininde Farklı Makine Öğrenme Yöntemlerinin Karşılaştırılması

Yıl 2021, Cilt: 11 Sayı: 22, 37 - 45, 30.12.2021

Öz

Günümüzde, güneş enerji santrallerine yapılan yatırımlar her geçen gün kayda değer derecede artış göstermektedir. Güneş enerjisinin meteorolojik parametrelere bağlı olarak değişken olması enerji üretiminin planlanmasını nispeten zorlaştırmaktadır. Bu durum şebeke işletme problemlerine yol açabileceğinden güneş enerjisi tahmini önemli bir konu haline gelmiştir. Bu çalışmada, makine öğrenmesi metotlarının kısa-dönemli güneş enerjisi tahmini yapabilirliği karşılaştırılmıştır. İlk olarak, Avustralya, Alice Springs’de bulunan bir güneş enerji merkezindeki 1B: Trina isimli santralin çıkış güç verisi ve bölgedeki ölçüm istasyonundan alınan meteorolojik parametrelerden oluşan bir veri seti elde edilmiştir. Daha sonra güç verisi Ampirik mod ayrıştırma yöntemi ile alt bileşenlerine ayrılmıştır. Bu çalışmada, güneş enerjisinin tahmini için Doğrusal Regresyon (DR), Destek Vektör Makinesi (DVM), Karar Ağacı Regresyonu (KAR), Gauss Süreç Regresyonu (GSR) ve Topluluk Regresyonu (TR) gibi en çok kullanılan yöntemler tercih edilmiştir. Bu yöntemlerin farklı tahmin ufuklarındaki tahmin performanslarını değerlendirmek için karşılaştırma çalışmaları gerçekleştirilmiştir. Bu çalışmalarda, tüm makine öğrenme yöntemleri için R, RMSE ve MAE gibi performans metrik sonuçları hesaplanmıştır. Elde edilen metrik sonuçlarına göre DVM’nin en iyi tahmin sonucunu sağladığı gözlemlenmiştir.

Kaynakça

  • [1] Ahmed, R., Sreeram, V., Mishra, Y., Arif, M.D. “A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization”, Renewable and Sustainable Energy Reviews, 124, pp. 1-26, 2020.
  • [2] Akhter, M.N., Saad, M., Hazlie, M., Noraisyah, M. S. “Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques”, IET Renewable Power Generation, 13(7), pp. 1009-1023, 2019.
  • [3] Kim, S., Jung, J., Sim, M. “A two-step approach to solar power generation prediction based on weather data using machine learning”, Sustainability, 2019.
  • [4] Sobri, S., Koohi-Kamali, S., Rahim, N. “Solar photovoltaic generation forecasting methods: a review”, Energy Conversion and Management, 156 pp. 459–97, 2017.
  • [5] Raza, M., Q., M. Nadarajah, C. Ekanayake. “On recent advances in PV output power forecast”, Solar Energy,136, pp.125-144, 2016.
  • [6] Şahan, M., Okur, Y. “Akdeniz bölgesine ait meteorolojik veriler kullanılarak yapay sinir ağları yardımıyla güneş enerjisinin tahmini”, Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 11(1) ,ss. 61-71, 2016.
  • [7] Demolli, H., Dokuz, A. Ş., Gokcek, M., Ecemiş, A. “Makine Öğrenmesi Algoritmalarıyla Güneş Enerjisi Tahmini: Niğde İli Örneği”, International Turkic World Congress on Science and Engineering, ss. 775-783, 2019.
  • [8] Gök, A.O., Yıldız, C., Şekkeli M. “Yapay sinir ağları kullanarak kısa dönem güneş enerjisi santrali üretim tahmini: Kahramanmaraş örnek çalışması”, Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi, 1(2), ss.186-195, 2019.
  • [9] Wolff, B., Kühnert, J., Lorenz, E., Kramer, O., Heinemann, D. “Comparing support vector regression for PV power forecasting to a physical modeling approach using measurement, numerical weather prediction, and cloud motion data”, Solar Energy, 135, ss. 197-208, 2016.
  • [10] Mahmud, K., Azam, S., Karim, A., Zobaed, S. “Machine learning based pv power generation forecasting in alice springs”, IEEE Access, pp. 1-13, 2021.
  • [11] Massaoudi, M., Chihi I., Sidhom L., Trabelsi M., Refaat, S., Abu-Rub, H. “ An effective hybrid narx-lstm model for point and interval pv power forecasting”, IEEE Access, 9, pp. 36571-36588, 2021.
  • [12] Korkmaz, D., Açıkgöz, H., Yıldız C. “A novel short-term photovoltaic power forecasting approach based on deep convolutional neural network”, Int J Green Energy,18, pp. 1–15, 2021.
  • [13] Yıldız, C., Açıkgöz, H. “A kernel extreme learning machine-based neural network to forecast very short-term power output of an on-grid photovoltaic power plant”, Energy Sources Part A: Recovery, Utilization and Environmental Effects, 43(4), pp. 395–412, 2021.
  • [14] Yulita, I. N., Abdullah, A. S., Helen, A., Hadi, S., Sholahuddin, A., Rejito J. “Comparison multi-layer perceptron and linear regression for time series prediction of novel coronavirus covid-19 data in West Java”, Journal of Physics: Conference Series,1722, pp. 1-8, 2021.
  • [15] Abdullah, A. S., Ruchjana, B. N., Jaya, M., Soemartini. “Comparison of sarıma and svm model for rainfall forecasting in bogor city ındonesia” Journal of Physics: Conference Series, 1722, pp. 1-8, 2020.
  • [16] Guo, W., Che, L., Shahidehpour, M., Wan X. “Machine-Learning based methods in short-term load forecasting”, The Electricity Journal, 34, 2021.
  • [17] Jijo, B. T., Abdulazeez, A. M. “Classification based on decision tree algorithm for machine learning”, Journal Of Applied Science And Technology Trends, 2(1), pp. 20-28, 2021.
  • [18] Murlidhar, B. R., Bejarbaneh, B. Y., Armaghani D. J., Mohammed A. S., Mohamad E. T. “Application of tree-based predictive models to forecast air overpressure induced by mine blasting”, Natural Resources Research, 30(2), 2021.
  • [19] Saha, M., Santara, A., Mitra, P., Chakraborty, A. Nanjundiah R S. “Prediction of the indian summer monsoon using a stacked autoencoder and ensemble regression model”, International Journal of Forecasting, 37, pp. 58-71, 2021.
  • [20] Ghasemi, P., Karbasi, M., Nouri, A. Z., Tabrizi, M. S., Azamathulla, H. M. “Application of gaussian process regression to forecast multi-step ahead SPEI drought index” Alexandria Engineering Journal, 60(6), pp. 5375–5392, 2021.
  • [21] Qiu, X., Ren, Y., Suganthan, P. N., Amaratunga, G. “Empirical Mode decomposition based ensemble deep learning for load demand time series forecasting”, Applied Soft Computing Journal, 54, pp. 246–55, 2017.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Akademik ve/veya teknolojik bilimsel makale
Yazarlar

Mehmet Fatih Bekçioğulları

Bünyamin Dikici

Hakan Açıkgöz

Ö. Fatih Keçecioğlu 0000-0001-7004-4947

Yayımlanma Tarihi 30 Aralık 2021
Gönderilme Tarihi 16 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 11 Sayı: 22

Kaynak Göster

APA Bekçioğulları, M. F., Dikici, B., Açıkgöz, H., Keçecioğlu, Ö. F. (2021). Güneş Enerjisinin Kısa-Dönem Tahmininde Farklı Makine Öğrenme Yöntemlerinin Karşılaştırılması. EMO Bilimsel Dergi, 11(22), 37-45.
AMA Bekçioğulları MF, Dikici B, Açıkgöz H, Keçecioğlu ÖF. Güneş Enerjisinin Kısa-Dönem Tahmininde Farklı Makine Öğrenme Yöntemlerinin Karşılaştırılması. EMO Bilimsel Dergi. Aralık 2021;11(22):37-45.
Chicago Bekçioğulları, Mehmet Fatih, Bünyamin Dikici, Hakan Açıkgöz, ve Ö. Fatih Keçecioğlu. “Güneş Enerjisinin Kısa-Dönem Tahmininde Farklı Makine Öğrenme Yöntemlerinin Karşılaştırılması”. EMO Bilimsel Dergi 11, sy. 22 (Aralık 2021): 37-45.
EndNote Bekçioğulları MF, Dikici B, Açıkgöz H, Keçecioğlu ÖF (01 Aralık 2021) Güneş Enerjisinin Kısa-Dönem Tahmininde Farklı Makine Öğrenme Yöntemlerinin Karşılaştırılması. EMO Bilimsel Dergi 11 22 37–45.
IEEE M. F. Bekçioğulları, B. Dikici, H. Açıkgöz, ve Ö. F. Keçecioğlu, “Güneş Enerjisinin Kısa-Dönem Tahmininde Farklı Makine Öğrenme Yöntemlerinin Karşılaştırılması”, EMO Bilimsel Dergi, c. 11, sy. 22, ss. 37–45, 2021.
ISNAD Bekçioğulları, Mehmet Fatih vd. “Güneş Enerjisinin Kısa-Dönem Tahmininde Farklı Makine Öğrenme Yöntemlerinin Karşılaştırılması”. EMO Bilimsel Dergi 11/22 (Aralık 2021), 37-45.
JAMA Bekçioğulları MF, Dikici B, Açıkgöz H, Keçecioğlu ÖF. Güneş Enerjisinin Kısa-Dönem Tahmininde Farklı Makine Öğrenme Yöntemlerinin Karşılaştırılması. EMO Bilimsel Dergi. 2021;11:37–45.
MLA Bekçioğulları, Mehmet Fatih vd. “Güneş Enerjisinin Kısa-Dönem Tahmininde Farklı Makine Öğrenme Yöntemlerinin Karşılaştırılması”. EMO Bilimsel Dergi, c. 11, sy. 22, 2021, ss. 37-45.
Vancouver Bekçioğulları MF, Dikici B, Açıkgöz H, Keçecioğlu ÖF. Güneş Enerjisinin Kısa-Dönem Tahmininde Farklı Makine Öğrenme Yöntemlerinin Karşılaştırılması. EMO Bilimsel Dergi. 2021;11(22):37-45.

EMO BİLİMSEL DERGİ
Elektrik, Elektronik, Bilgisayar, Biyomedikal, Kontrol Mühendisliği Bilimsel Hakemli Dergisi
TMMOB ELEKTRİK MÜHENDİSLERİ ODASI 
IHLAMUR SOKAK NO:10 KIZILAY/ANKARA
TEL: +90 (312) 425 32 72 (PBX) - FAKS: +90 (312) 417 38 18
bilimseldergi@emo.org.tr