Çelik Yüzeylerdeki Kusurların Tespiti için Derin Öğrenme Tabanlı Gömülü Sistem Tasarımı
Yıl 2022,
Cilt: 12 Sayı: 2, 27 - 33, 11.12.2022
Emre Güçlü
,
İlhan Aydın
,
Taha Kubilay Şener
,
Erhan Akın
Öz
Metal yüzeylerdeki kusurlar endüstriyel ürünlerin kalitesini olumsuz etkilemektedir. Bu nedenle üretim sonrası hata tespiti, kalite kontrolünün sağlanmasında önemli bir yere sahiptir. Bu çalışma, bilgisayar görmesi ve YOLOv7 kullanılarak çelik yüzeylerdeki kusurların otomatik denetimi ile ilgilidir. Bu çalışmadaki ana senaryo, imalat işyerlerinde çelik tellerin üretim sonrası kusur muayenesine odaklanmaktadır. Hata tespit sistemi, giriş görüntüsündeki kusurların sınıfını ve görüntü üzerindeki kesin konumlarını elde etmeyi amaçlar. Hızlı algılama yeteneği elde etmek için bu sistemde TensorRT kullanılmaktadır, bu da gömülü cihazların çıkarım hızını arttırmaktadır. Ayrıca, sınırlı veri ölçekleme problemini azaltmak için veri artırma algoritması kullanılır. YOLOv7'nin performansı YOLOv5 ile karşılaştırılmıştır. Hata tespiti için YOLOv7 kullanılarak yüksek hız ve doğruluk elde edilmiştir. Elde edilen sonuçlar, önerilen yöntemin metal yüzeylerdeki kusurları tespit etmek için yeterli bir yöntem olduğunu göstermektedir.
Destekleyen Kurum
TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU
Kaynakça
- Angelopoulos, A., Michailidis, E. T., Nomikos, N., Trakadas, P., Hatziefremidis, A., Voliotis, S., & Zahariadis, T. (2019). Tackling faults in the industry 4.0 era—a survey of machine-learning solutions and key aspects. Sensors, 20(1), 109.
- Peres, R. S., Jia, X., Lee, J., Sun, K., Colombo, A. W., & Barata, J. (2020). Industrial artificial intelligence in industry 4.0-systematic review, challenges and outlook. IEEE Access, 8, 220121-220139.
- Liu, Y., Xu, K., & Xu, J. (2019). An improved MB-LBP defect recognition approach for the surface of steel plates. Applied Sciences, 9(20), 4222.
- Liu, X., Xue, F., & Teng, L. (2018, June). Surface defect detection based on gradient lbp. In 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC) (pp. 133-137). IEEE.
- Chaudhari, C. V. (2021). Steel surface defect detection using glcm, gabor wavelet, hog, and random forest classifier. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(12), 263-273.
- Wang, H., Zhang, J., Tian, Y., Chen, H., Sun, H., & Liu, K. (2018). A simple guidance template-based defect detection method for strip steel surfaces. IEEE Transactions on Industrial Informatics, 15(5), 2798-2809.
- He, Z., & Sun, L. (2015). Surface defect detection method for glass substrate using improved Otsu segmentation. Applied optics, 54(33), 9823-9830.
- Suvdaa, B., Ahn, J., & Ko, J. (2012). Steel surface defects detection and classification using SIFT and voting strategy. International Journal of Software Engineering and Its Applications, 6(2), 161-166.
- Yoo, H. J. (2015). Deep convolution neural networks in computer vision: a review. IEIE Transactions on Smart Processing and Computing, 4(1), 35-43.
- Zhao, W., Chen, F., Huang, H., Li, D., & Cheng, W. (2021). A new steel defect detection algorithm based on deep learning. Computational Intelligence and Neuroscience, 2021.
- Liu, Y., Xu, K., & Xu, J. (2019). Periodic surface defect detection in steel plates based on deep learning. Applied Sciences, 9(15), 3127.
- He, Y., Song, K., Meng, Q., & Yan, Y. (2019). An end-to-end steel surface defect detection approach via fusing multiple hierarchical features. IEEE Transactions on Instrumentation and Measurement, 69(4), 1493-1504.
- Li, Z., Tian, X., Liu, X., Liu, Y., & Shi, X. (2022). A two-stage industrial defect detection framework based on improved-yolov5 and optimized-inception-resnetv2 models. Applied Sciences, 12(2), 834.
- Sharma, M., Lim, J., & Lee, H. (2022). The Amalgamation of the Object Detection and Semantic Segmentation for Steel Surface Defect Detection. Applied Sciences, 12(12), 6004.
- Ferguson, M., Ak, R., Lee, Y. T. T., & Law, K. H. (2017, December). Automatic localization of casting defects with convolutional neural networks. In 2017 IEEE international conference on big data (big data) (pp. 1726-1735). IEEE.
- Ren, Z., Fang, F., Yan, N., & Wu, Y. (2021). State of the art in defect detection based on machine vision. International Journal of Precision Engineering and Manufacturing-Green Technology, 1-31.
- Spinola, C. G., Canero, J., Moreno-Aranda, G., Bonelo, J. M., & Martin-Vazquez, M. (2011, May). Continuous real-time optical measuring of strip width and edge inspection in stainless steel production lines. In 2011 IEEE International Instrumentation and Measurement Technology Conference (pp. 1-4). IEEE.
- Ghorai, S., Mukherjee, A., Gangadaran, M., & Dutta, P. K. (2012). Automatic defect detection on hot-rolled flat steel products. IEEE Transactions on Instrumentation and Measurement, 62(3), 612-621.
- Spinola, C. G., Canero, J., Moreno-Aranda, G., Bonelo, J. M., & Martin-Vazquez, M. (2011, May). Real-time image processing for edge inspection and defect detection in stainless steel production lines. In 2011 IEEE International Conference on Imaging Systems and Techniques (pp. 170-175). IEEE.
- Vanholder, H. (2016). Efficient inference with tensorrt. In GPU Technology Conference (Vol. 1, p. 2).
- Jeong, E., Kim, J., Tan, S., Lee, J., & Ha, S. (2021). Deep learning inference parallelization on heterogeneous processors with tensorrt. IEEE Embedded Systems Letters, 14(1), 15-18.
- Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Zheng, X. (2016). {TensorFlow}: a system for {Large-Scale} machine learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16) (pp. 265-283).
- Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.155