Research Article
BibTex RIS Cite
Year 2020, Volume: 4 Issue: 4, 142 - 151, 20.12.2020
https://doi.org/10.26701/ems.763303

Abstract

References

  • Gedik, E. (2016). Experimental investigation of module temperature effect on photovoltaic panels’ efficiency, Journal of Polytechnic, 19 (4): 569-576.
  • Jerez, S., Tobin, I., Vautard, R., Montávez, J. P., López-Romero, J. M., Thais, F., ... , Nikulin, G. (2015). The impact of climate change on photovoltaic power generation in Europe. Nature communications, 6(1), 1-8.
  • Skoplaki, E., Palyvos, J. A. (2009). On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar energy, 83(5), 614-624.
  • Makrides, G. et al. (2012). Performance of Photovoltaics Under Actual Operating Conditions, Third Generation Photovoltaics. Dr. Vasilis Fthenakis (Ed.), Intechopen.
  • Razak, A., Irwan, Y. M., Leow, W. Z., Irwanto, M., Safwati, I., Zhafarina, M. (2016). Investigation of the effect temperature on photovoltaic (PV) panel output performance. International Journal on Advanced Science, Engineering and Information Technology, 6(5): 682-688.
  • Hasanuzzaman, M., Malek, A. B. M. A., Islam, M. M., Pandey, A. K., Rahim, N. A. (2016). Global advancement of cooling technologies for PV systems: a review. Solar Energy, 137, 25-45.
  • Kandeal, A. W., Thakur, A. K., Elkadeem, M. R., Elmorshedy, M. F., Ullah, Z., Sathyamurthy, R., Sharshir, S. W. (2020). Photovoltaics performance improvement using different cooling methodologies: A State-of-Art Review. Journal of Cleaner Production, 122772.
  • Piotrowski, L. J., Simões, M. G., Farret, F. A. (2020). Feasibility of water-cooled photovoltaic panels under the efficiency and durability aspects. Solar Energy, 207: 103-109.
  • Ma, T., Li, Z., Zhao, J. (2019). Photovoltaic panel integrated with phase change materials (PV-PCM): technology overview and materials selection. Renewable and Sustainable Energy Reviews, 116, 109406.
  • Thaib, R., Rizal, S., Mahlia, T. M. I., Pambudi, N. A. (2018). Experimental analysis of using beeswax as phase change materials for limiting temperature rise in building integrated photovoltaics. Case studies in thermal engineering, 12, 223-227.
  • Huld, T., Amillo, A. M. G. (2015). Estimating PV Module Performance over Large Geographical Regions: The Role of Irradiance, Air Temperature, Wind Speed and Solar Spectrum, Energies, 8: 5159-5181.
  • Ali, M., Iqbal, M. H., Sheikh, N. A., Ali, H. M., Shehryar Manzoor, M., Khan, M. M., Tamrin, K. F. (2017). Performance investigation of air velocity effects on pv modules under controlled conditions. International Journal of Photoenergy, 2017.
  • Schwingshackl, C. (2013). Wind effect on PV module temperature: analysis of different techniques for an accurate estimation, Energy Procedia, 40: 77–86.
  • Dubey, S., Sarvaiya, J. N., Seshadri, B. (2013). Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world–a review. Energy Procedia, 33: 311-321.
  • Chakraborty, S., et al. (2017). Mathematical method to find best suited PV technology for different climatic zones of India, International Journal of Energy and Environmental Engineering. 8: 153–166.
  • Jiang, Y., Lu, L. (2016). Experimentally investigating the effect of temperature differences in the particle deposition process on solar photovoltaic (PV) modules, Sustainability, 8: 1091-1100.
  • Performance ratio (2020, October 15) Retrieved from http://files.sma.de/dl/7680/Perfratio-TI-en-11.pdf
  • Jansson, E., Elfving, G. (2017). Supervisor: Joakim Widén, Modelling extensive solar power production in urban and rural areas, Faculty of Science and Technology, Uppsala University.
  • Yaka, E. et al. (2014). Rectified Solar Energy Potential Atlas of Southeastern Anatolia Region. Solar TR 2014, Solar Conference & Exhibition proceeding, 371-375. İzmir, Turkey.
  • Global Horizontal Irradiance (2020, October 15) Retrieved from http://www.solar-med-atlas.org/solarmed-atlas/map.htm#p=37.822802,36.386719&t=ghi
  • Map, Global Horizontal Irradiance (2020, October 15) Retrieved from http://www.solar-med-atlas.org/solarmed-atlas/map.htm#p=37.822802,36.386719&t=ghi
  • Panasonic Solar, HIT (2020, October 15) Retrieved from https://lstr.panasonic.com/panel/upload/panasonic-gunes-panelleri.pdf
  • First Solar Series 4™ (2020, October 15) Retrieved from http://fortuneenergy.net/content/sunmodule-plus-mono-5-busbar-datasheet.pdf
  • http://www.firstsolar.com/-/media/First-Solar/Technical-Documents/Series-4-Datasheets/Series-4V2-Datasheet.ashx
  • Sunmodule Plus, SW 290-310 (2020, October 15) Retrieved from Mono http://fortuneenergy.net/content/sunmodule-plus-mono-5-busbar-datasheet.pdf
  • Yingli Solar YGE 60 Cell Seris 2 (2020, October 15) Retrieved from http://www.yinglisolar.com/static/assets/uploads/products/downloads/DS_YGE60CELL%20%20SERIES%202%20-29b_35mm_EN_EN_20200407_V04.pdf
  • Kamuyu, W. C. L., Lim, J. R., Won, C. S., Ahn, H. K. (2018). Prediction Model of Photovoltaic Module Temperature for Power Performance of Floating PVs, Energies, 11, 447.
  • Jakhrani, A.Q. et al. (2011). Comparison of Solar Photovoltaic Module Temperature Models, World Applied Sciences Journal 14 (Special Issue of Food and Environment), 01-08.
  • Ross, R. G. (1980). Flat-plate photovoltaic array design optimization, 14th IEEE Photovoltaic Specialists Conference, San Diego, CA, 1126-1132.

A Detailed Analysis of Daily, Seasonal and Yearly Performance Values of Photovoltaic Modules Using by a Simplified Method

Year 2020, Volume: 4 Issue: 4, 142 - 151, 20.12.2020
https://doi.org/10.26701/ems.763303

Abstract

The performance of panels for PV system design is determined according to the performance values in standard test conditions specified in the panel catalog, without knowing the performance under actual operating conditions. However, the operating performance of the PV panel depends on meteorological characteristics of place where the PV system is installed. Especially, if outside temperature values are above test conditions, the efficiency of the PV panel decreases and generation losses are observed. In this study, performance parameters of photovoltaic panel were calculated for four different PV panel technologies only by using their catalogue values like NOCT temperature, power-temperature coefficient etc. For this purpose, real working conditions were simulated using 3-year climate data for the meteorological conditions of Sanliurfa, Turkey. In the end, PV panel efficiency, electricity generation values and performance ratios were calculated in accordance with the temperature. According to the results obtained, the PV panels’ performance ratios decreased up to 0.75 during the summer months. The highest unit energy generation was achieved with thin film PV technology.

References

  • Gedik, E. (2016). Experimental investigation of module temperature effect on photovoltaic panels’ efficiency, Journal of Polytechnic, 19 (4): 569-576.
  • Jerez, S., Tobin, I., Vautard, R., Montávez, J. P., López-Romero, J. M., Thais, F., ... , Nikulin, G. (2015). The impact of climate change on photovoltaic power generation in Europe. Nature communications, 6(1), 1-8.
  • Skoplaki, E., Palyvos, J. A. (2009). On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar energy, 83(5), 614-624.
  • Makrides, G. et al. (2012). Performance of Photovoltaics Under Actual Operating Conditions, Third Generation Photovoltaics. Dr. Vasilis Fthenakis (Ed.), Intechopen.
  • Razak, A., Irwan, Y. M., Leow, W. Z., Irwanto, M., Safwati, I., Zhafarina, M. (2016). Investigation of the effect temperature on photovoltaic (PV) panel output performance. International Journal on Advanced Science, Engineering and Information Technology, 6(5): 682-688.
  • Hasanuzzaman, M., Malek, A. B. M. A., Islam, M. M., Pandey, A. K., Rahim, N. A. (2016). Global advancement of cooling technologies for PV systems: a review. Solar Energy, 137, 25-45.
  • Kandeal, A. W., Thakur, A. K., Elkadeem, M. R., Elmorshedy, M. F., Ullah, Z., Sathyamurthy, R., Sharshir, S. W. (2020). Photovoltaics performance improvement using different cooling methodologies: A State-of-Art Review. Journal of Cleaner Production, 122772.
  • Piotrowski, L. J., Simões, M. G., Farret, F. A. (2020). Feasibility of water-cooled photovoltaic panels under the efficiency and durability aspects. Solar Energy, 207: 103-109.
  • Ma, T., Li, Z., Zhao, J. (2019). Photovoltaic panel integrated with phase change materials (PV-PCM): technology overview and materials selection. Renewable and Sustainable Energy Reviews, 116, 109406.
  • Thaib, R., Rizal, S., Mahlia, T. M. I., Pambudi, N. A. (2018). Experimental analysis of using beeswax as phase change materials for limiting temperature rise in building integrated photovoltaics. Case studies in thermal engineering, 12, 223-227.
  • Huld, T., Amillo, A. M. G. (2015). Estimating PV Module Performance over Large Geographical Regions: The Role of Irradiance, Air Temperature, Wind Speed and Solar Spectrum, Energies, 8: 5159-5181.
  • Ali, M., Iqbal, M. H., Sheikh, N. A., Ali, H. M., Shehryar Manzoor, M., Khan, M. M., Tamrin, K. F. (2017). Performance investigation of air velocity effects on pv modules under controlled conditions. International Journal of Photoenergy, 2017.
  • Schwingshackl, C. (2013). Wind effect on PV module temperature: analysis of different techniques for an accurate estimation, Energy Procedia, 40: 77–86.
  • Dubey, S., Sarvaiya, J. N., Seshadri, B. (2013). Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world–a review. Energy Procedia, 33: 311-321.
  • Chakraborty, S., et al. (2017). Mathematical method to find best suited PV technology for different climatic zones of India, International Journal of Energy and Environmental Engineering. 8: 153–166.
  • Jiang, Y., Lu, L. (2016). Experimentally investigating the effect of temperature differences in the particle deposition process on solar photovoltaic (PV) modules, Sustainability, 8: 1091-1100.
  • Performance ratio (2020, October 15) Retrieved from http://files.sma.de/dl/7680/Perfratio-TI-en-11.pdf
  • Jansson, E., Elfving, G. (2017). Supervisor: Joakim Widén, Modelling extensive solar power production in urban and rural areas, Faculty of Science and Technology, Uppsala University.
  • Yaka, E. et al. (2014). Rectified Solar Energy Potential Atlas of Southeastern Anatolia Region. Solar TR 2014, Solar Conference & Exhibition proceeding, 371-375. İzmir, Turkey.
  • Global Horizontal Irradiance (2020, October 15) Retrieved from http://www.solar-med-atlas.org/solarmed-atlas/map.htm#p=37.822802,36.386719&t=ghi
  • Map, Global Horizontal Irradiance (2020, October 15) Retrieved from http://www.solar-med-atlas.org/solarmed-atlas/map.htm#p=37.822802,36.386719&t=ghi
  • Panasonic Solar, HIT (2020, October 15) Retrieved from https://lstr.panasonic.com/panel/upload/panasonic-gunes-panelleri.pdf
  • First Solar Series 4™ (2020, October 15) Retrieved from http://fortuneenergy.net/content/sunmodule-plus-mono-5-busbar-datasheet.pdf
  • http://www.firstsolar.com/-/media/First-Solar/Technical-Documents/Series-4-Datasheets/Series-4V2-Datasheet.ashx
  • Sunmodule Plus, SW 290-310 (2020, October 15) Retrieved from Mono http://fortuneenergy.net/content/sunmodule-plus-mono-5-busbar-datasheet.pdf
  • Yingli Solar YGE 60 Cell Seris 2 (2020, October 15) Retrieved from http://www.yinglisolar.com/static/assets/uploads/products/downloads/DS_YGE60CELL%20%20SERIES%202%20-29b_35mm_EN_EN_20200407_V04.pdf
  • Kamuyu, W. C. L., Lim, J. R., Won, C. S., Ahn, H. K. (2018). Prediction Model of Photovoltaic Module Temperature for Power Performance of Floating PVs, Energies, 11, 447.
  • Jakhrani, A.Q. et al. (2011). Comparison of Solar Photovoltaic Module Temperature Models, World Applied Sciences Journal 14 (Special Issue of Food and Environment), 01-08.
  • Ross, R. G. (1980). Flat-plate photovoltaic array design optimization, 14th IEEE Photovoltaic Specialists Conference, San Diego, CA, 1126-1132.
There are 29 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Mehmet Azmi Aktacir 0000-0003-2345-7815

Erdal Yıldırım 0000-0002-9309-2420

Yusuf İşıker 0000-0002-6777-0080

Publication Date December 20, 2020
Acceptance Date September 8, 2020
Published in Issue Year 2020 Volume: 4 Issue: 4

Cite

APA Aktacir, M. A., Yıldırım, E., & İşıker, Y. (2020). A Detailed Analysis of Daily, Seasonal and Yearly Performance Values of Photovoltaic Modules Using by a Simplified Method. European Mechanical Science, 4(4), 142-151. https://doi.org/10.26701/ems.763303

Dergi TR Dizin'de Taranmaktadır.

Flag Counter