Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 5 Sayı: 1, 1 - 5, 20.03.2021
https://doi.org/10.26701/ems.783892

Öz

Kaynakça

  • Dincer I., Rosen, M.A. (2011). Thermal Energy Storage Systems and Applications. 2nd ed., Wiley, New York.
  • Dincer, I., Ezan M.A. (2018). Heat Storage: A Unique Solution for Energy Systems. 1st ed. Springer, Switzerland.
  • Regin, A. F., Solanki, S.C., Saini, J.S. (2017). Heat transfer characteristics of thermal energy storage system using PCM capsules: A review. Renewable and Sustainable Energy Reviews, 12(9): 2438-2458 , DOI: 10.1016/j.rser.2007.06.009.
  • Koohi-Fayegh, S., Rosen, M.A. (2020). A review of energy storage types, applications and recent developments. Journal of Energy Storage, 27: 101047, DOI: 10.1016/j.est.2019.101047.
  • Kenisarin, M.M., Mahkamov, K., Costa, S.C., Makhkamova, I. (2020). Melting and solidification of PCMs inside a spherical capsule: A critical review. Journal of Energy Storage, 27: 101082, DOI: 10.1016/j.est.2019.101082.
  • Pedroso, R.I., Domoto, G.A. (1973). Perturbation solutions for spherical solidification of saturated liquids. Journal of Heat Transfer, 95 (1): 42-46, DOI: 10.1115/1.3450002.
  • Tao, L.C. (1967). Generalized numerical solutions of freezing a saturated liquid in cylinders and spheres. AIChE Journal, 13 (1): 165–169, DOI:10.1002/aic.690130130.
  • Bilir, L., Ilken, Z. (2005). Total solidification time of a liquid phase change material enclosed in cylindrical/spherical containers. Applied Thermal Engineering, 25(10):1488-1502, DOI:10.1016/j.applthermaleng.2004.10.005.
  • Erek, A., Dincer, I. (2009). Numerical heat transfer analysis of encapsulated ice thermal energy storage system with variable heat transfer coefficient in downstream. International Journal of Heat and Mass Transfer, 52(3-4): 851-859, DOI:10.1016/j.ijheatmasstransfer.2008.06.024.
  • Gharebaghi, M., Sezai, I. (2007). Enhancement of Heat Transfer in Latent Heat Storage Modules with Internal Fins. Numerical Heat Transfer, Part A: Applications, 53(7): 749–765, DOI:10.1080/10407780701715786.
  • Asker, M., Alptekin E., Ezan M.A., Ganjehsarabi H. (2018). Entropy generation analysis of multilayer PCM slabs integrated with fins. International Journal of Exergy, 26(1-2): 154–169, DOI: 10.1504/IJEX.2018.092511.
  • Sari, A., Karaipekli, A. (2007). Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Applied Thermal Engineering, 27(8-9): 1271–1277, DOI: 10.1016/j.applthermaleng.2006.11.004.
  • Narasimhan, N. L., Veeraraghavan, V., Ramanathan, G., Bharadwaj, B. S., Thamilmani, M. (2018). Studies on the inward spherical solidification of a phase change material dispersed with macro particles. Journal of Energy Storage, 15: 158-171, DOI: 10.1016/j.est.2017.10.016.
  • Welsford, C., Bayomy, A. M., & Saghir, M. Z. (2018). Role of metallic foam in heat storage in the presence of nanofluid and microencapsulated phase change material. Thermal Science and Engineering Progress, 7: 61-69, DOI: 10.1016/j.tsep.2018.05.003.
  • Rehman, T., Ali, H. M., Janjua, M. M., Sajjad, U., Yan, W.M. (2019). A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams. International Journal of Heat and Mass Transfer, 135: 649-673, DOI:10.1016/j.ijheatmasstransfer.2019.02.001.
  • Zhang, Z., Wang, Z., He, X. (2020). Analytical solution of the melting process of phase-change materials in thermal energy storage system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-16, DOI:10.1080/15567036.2020.1779413.
  • Asker, M., Ganjehsarabi, H., Coban, M.T. (2018). Numerical investigation of inward solidification inside spherical capsule by using temperature transforming method. Ain Shams Engineering Journal, 9(4) : 537-547, DOI: https://doi:org/10.1016/j.asej.2016.02.009.
  • Incropera, F., Dewit, D., Bergman, T., Lavine, A. (2007). Fundamentals of Heat and Mass Transfer. 6th ed., Wiley, New York.
  • Cao, Y., Faghri A., (1990) A numerical analysis of phase-change problem including natural convection. ASME Journal of Heat Transfer, 112: 812-816, DOI: https://doi.org/10.1115/1.2910466
  • Versteeg, H.K. Malalasekera, W. (1995). An introduction to computational fluid dynamics: The finite volume method. Prentice Hall, London.
  • Patankar, S.V. (1980). Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York.
  • Ismail, K.A.R., Henriquez, J.R., da Silva T.M. (2003). A parametric study on ice formation inside a spherical capsule. International Journal of Thermal Sciences, 42(9): 881-887, DOI: https://doi.org/10.1016/S1290-0729(03)00060-7
  • Bhattacharya, A., Calmidi, V.V., Mahajan, R.L. (2002). Thermophysical properties of high porosity metal foams. International Journal of Heat Mass Transfer 45(5): 1017-1031, DOI: https://doi.org/10.1016/S0017-9310(01)00220-4.
  • Venkateshwar K., Tasnim, S.H. Simha H., Mahmud S. (2020). Empirical correlations to quantify the effect of metal foam on solidification process in constant thermal capacity and constant volume systems, Journal of Energy Storage, 30: 101482, DOI: https://doi.org/10.1016/j.est.2020.101482.

Numerical Study on Solidification of Phase Change Materials Embedded with Metal Foam

Yıl 2021, Cilt: 5 Sayı: 1, 1 - 5, 20.03.2021
https://doi.org/10.26701/ems.783892

Öz

This work investigates the solidification of phase change material (PCM) embedded with metal foam (MF) in a spherical capsule which its outer layer is exposed to convective heat transfer. The one-dimensional energy equation is resolved by performing finite volume method accompanied with temperature transforming technique. Four separate scenarios are developed for different porosity value of MF in order to analyze the thermal behavior of composite PCM with MF. The numerical model is validated by experimental data taken from the literature and substantially good agreement is demonstrated. The results show that at the case where the porosity ε =0.92, the elapsed time for complete solidification is decreases by 88% compared to the case without MF (ε =1.0).

Kaynakça

  • Dincer I., Rosen, M.A. (2011). Thermal Energy Storage Systems and Applications. 2nd ed., Wiley, New York.
  • Dincer, I., Ezan M.A. (2018). Heat Storage: A Unique Solution for Energy Systems. 1st ed. Springer, Switzerland.
  • Regin, A. F., Solanki, S.C., Saini, J.S. (2017). Heat transfer characteristics of thermal energy storage system using PCM capsules: A review. Renewable and Sustainable Energy Reviews, 12(9): 2438-2458 , DOI: 10.1016/j.rser.2007.06.009.
  • Koohi-Fayegh, S., Rosen, M.A. (2020). A review of energy storage types, applications and recent developments. Journal of Energy Storage, 27: 101047, DOI: 10.1016/j.est.2019.101047.
  • Kenisarin, M.M., Mahkamov, K., Costa, S.C., Makhkamova, I. (2020). Melting and solidification of PCMs inside a spherical capsule: A critical review. Journal of Energy Storage, 27: 101082, DOI: 10.1016/j.est.2019.101082.
  • Pedroso, R.I., Domoto, G.A. (1973). Perturbation solutions for spherical solidification of saturated liquids. Journal of Heat Transfer, 95 (1): 42-46, DOI: 10.1115/1.3450002.
  • Tao, L.C. (1967). Generalized numerical solutions of freezing a saturated liquid in cylinders and spheres. AIChE Journal, 13 (1): 165–169, DOI:10.1002/aic.690130130.
  • Bilir, L., Ilken, Z. (2005). Total solidification time of a liquid phase change material enclosed in cylindrical/spherical containers. Applied Thermal Engineering, 25(10):1488-1502, DOI:10.1016/j.applthermaleng.2004.10.005.
  • Erek, A., Dincer, I. (2009). Numerical heat transfer analysis of encapsulated ice thermal energy storage system with variable heat transfer coefficient in downstream. International Journal of Heat and Mass Transfer, 52(3-4): 851-859, DOI:10.1016/j.ijheatmasstransfer.2008.06.024.
  • Gharebaghi, M., Sezai, I. (2007). Enhancement of Heat Transfer in Latent Heat Storage Modules with Internal Fins. Numerical Heat Transfer, Part A: Applications, 53(7): 749–765, DOI:10.1080/10407780701715786.
  • Asker, M., Alptekin E., Ezan M.A., Ganjehsarabi H. (2018). Entropy generation analysis of multilayer PCM slabs integrated with fins. International Journal of Exergy, 26(1-2): 154–169, DOI: 10.1504/IJEX.2018.092511.
  • Sari, A., Karaipekli, A. (2007). Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Applied Thermal Engineering, 27(8-9): 1271–1277, DOI: 10.1016/j.applthermaleng.2006.11.004.
  • Narasimhan, N. L., Veeraraghavan, V., Ramanathan, G., Bharadwaj, B. S., Thamilmani, M. (2018). Studies on the inward spherical solidification of a phase change material dispersed with macro particles. Journal of Energy Storage, 15: 158-171, DOI: 10.1016/j.est.2017.10.016.
  • Welsford, C., Bayomy, A. M., & Saghir, M. Z. (2018). Role of metallic foam in heat storage in the presence of nanofluid and microencapsulated phase change material. Thermal Science and Engineering Progress, 7: 61-69, DOI: 10.1016/j.tsep.2018.05.003.
  • Rehman, T., Ali, H. M., Janjua, M. M., Sajjad, U., Yan, W.M. (2019). A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams. International Journal of Heat and Mass Transfer, 135: 649-673, DOI:10.1016/j.ijheatmasstransfer.2019.02.001.
  • Zhang, Z., Wang, Z., He, X. (2020). Analytical solution of the melting process of phase-change materials in thermal energy storage system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-16, DOI:10.1080/15567036.2020.1779413.
  • Asker, M., Ganjehsarabi, H., Coban, M.T. (2018). Numerical investigation of inward solidification inside spherical capsule by using temperature transforming method. Ain Shams Engineering Journal, 9(4) : 537-547, DOI: https://doi:org/10.1016/j.asej.2016.02.009.
  • Incropera, F., Dewit, D., Bergman, T., Lavine, A. (2007). Fundamentals of Heat and Mass Transfer. 6th ed., Wiley, New York.
  • Cao, Y., Faghri A., (1990) A numerical analysis of phase-change problem including natural convection. ASME Journal of Heat Transfer, 112: 812-816, DOI: https://doi.org/10.1115/1.2910466
  • Versteeg, H.K. Malalasekera, W. (1995). An introduction to computational fluid dynamics: The finite volume method. Prentice Hall, London.
  • Patankar, S.V. (1980). Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York.
  • Ismail, K.A.R., Henriquez, J.R., da Silva T.M. (2003). A parametric study on ice formation inside a spherical capsule. International Journal of Thermal Sciences, 42(9): 881-887, DOI: https://doi.org/10.1016/S1290-0729(03)00060-7
  • Bhattacharya, A., Calmidi, V.V., Mahajan, R.L. (2002). Thermophysical properties of high porosity metal foams. International Journal of Heat Mass Transfer 45(5): 1017-1031, DOI: https://doi.org/10.1016/S0017-9310(01)00220-4.
  • Venkateshwar K., Tasnim, S.H. Simha H., Mahmud S. (2020). Empirical correlations to quantify the effect of metal foam on solidification process in constant thermal capacity and constant volume systems, Journal of Energy Storage, 30: 101482, DOI: https://doi.org/10.1016/j.est.2020.101482.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Research Article
Yazarlar

Mustafa Asker 0000-0001-5989-3366

Hadi Genceli Bu kişi benim 0000-0002-9273-548X

Yayımlanma Tarihi 20 Mart 2021
Kabul Tarihi 15 Ekim 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 5 Sayı: 1

Kaynak Göster

APA Asker, M., & Genceli, H. (2021). Numerical Study on Solidification of Phase Change Materials Embedded with Metal Foam. European Mechanical Science, 5(1), 1-5. https://doi.org/10.26701/ems.783892

Dergi TR Dizin'de Taranmaktadır.

Flag Counter