Research Article
BibTex RIS Cite
Year 2023, Volume: 7 Issue: 2, 99 - 108, 20.06.2023
https://doi.org/10.26701/ems.1276575

Abstract

References

  • [1] Bejan, A., (1995). Entropy generation minimization. CRC press Boca Raton, FL.
  • [2] Kuru, M.N., (2023). Determination of the optimum operating conditions and geometrical dimensions of the plate fin heat sinks using teaching-learning-based-optimization algorithm. Journal of Heat and Mass Transfer. Vol. 145. doi: 10.1115/1.4056299
  • [3] Yu, X., Feng, J., Feng, Q., Wang, Q., (2005). Development of a plate-pin fin heat sink and its performance comparisons with a plate fin heat sink. Applied Thermal Engineering. 25(2–3): 173–82. doi: 10.1016/j.applthermaleng.2004.06.016.
  • [4] Yuan, W., Zhao, J., Tso, C.P., Wu, T., Liu, W., Ming, T., (2012). Numerical simulation of the thermal hydraulic performance of a plate pin fin heat sink. Applied Thermal Engineering. 48: 81–8. doi: 10.1016/j.applthermaleng.2012.04.029.
  • [5] Yamaç, H.İ., Koca, A., (2018). Pin-kanatçık, plaka-kanatçık ve plaka-pin-kanatçıkların soğutma performanslarının sayısal metod kullanılarak karşılaştırılması. Gazi Journal of Engineering Sciences. 4(2): 91–8.
  • [6] Ayli, E., Bayer, O., Aradag, S., (2016). Experimental investigation and CFD analysis of rectangular profile FINS in a square channel for forced convection regimes. International Journal of Thermal Sciences. 109: 279–90. doi: 10.1016/j.ijthermalsci.2016.06.021.
  • [7] Inci, A.B., Bayer, Ö., (2019). Experimental and numerical study on heat transfer performance of square, cylindrical and plate heat sinks in external transition flow regime. Journal of Thermal Science and Technology. 39(2): 151–61.
  • [8] Gupta, A., Kumar, M., Patil, A.K., (2019). Enhanced heat transfer in plate fin heat sink with dimples and protrusions. Heat and Mass Transfer. 55(8): 2247–60. doi: 10.1007/s00231-019-02561-w.
  • [9] Shaeri, M.R., Yaghoubi, M., (2009). Thermal enhancement from heat sinks by using perforated fins. Energy Conversion and Management. 50(5): 1264–70. doi: 10.1016/j.enconman.2009.01.021.
  • [10] Ahmed, H.E., Ahmed, M.I., (2015). Optimum thermal design of triangular, trapezoidal and rectangular grooved microchannel heat sinks. International Communications in Heat and Mass Transfer. 66: 47–57. doi: 10.1016/j.icheatmasstransfer.2015.05.009.
  • [11] Ahmed, H.E., (2016). Optimization of thermal design of ribbed flat-plate fin heat sink. Applied Thermal Engineering. 102: 1422–32. doi: 10.1016/j.applthermaleng.2016.03.119.
  • [12] Khudhur, D.S., Al-Zuhairy, R.C., and Kassim, M.S., (2022). Thermal analysis of heat transfer with different fin geometry through straight plate-fin heat sinks. International Journal of Thermal Sciences. doi: 10.1016/j.ijthermalsci.2021.107443
  • [13] Li, H.Y., Chen, C.L., Chao, S.M., Liang, G.F., (2013). Enhancing heat transfer in a plate-fin heat sink using delta winglet vortex generators. International Journal of Heat and Mass Transfer. 67: 666–77. doi: 10.1016/j.ijheatmasstransfer.2013.08.042.
  • [14] Huang, C.H., Tung, P.W., (2020). Numerical and experimental studies on an optimum Fin design problem to determine the deformed wavy-shaped heat sinks. International Journal of Thermal Sciences. 151(January): 106282. doi: 10.1016/j.ijthermalsci.2020.106282.
  • [15] Bouchenafa, R., Mohammed, H.A., Saim, R., (2019). Numerical study of the thermal and hydraulic performances of heat sink made of wavy fins. Mechanics and Mechanical Engineering. 23(1): 150–61. doi: 10.2478/mme-2019-0021.
  • [16] Incropera, F.P., DeWitt, D.P., (1996). Fundamentals of Heat and Mass Transfer. 4th Edition, New York City, New York: John Wiley & Sons, Inc.
  • [17] Ansys Inc. (2019). Ansys Fluent User’s Guide.
  • [18] White, F.M., (1991). Viscous Fluid Flow, Second Edition. New York: McGraw-Hill.
  • [19] Mangrulkar, C.K., Dhoble, A.S., Deshmukh, A.R., Mandavgane, S.A., (2017). Numerical investigation of heat transfer and friction factor characteristics from in-line cam shaped tube bank in crossflow. Applied Thermal Engineering. 110: 521–38. doi: 10.1016/j.applthermaleng.2016.08.174.
  • [20] Jonsson, H., Moshfegh, B., (2001). Modeling of the thermal and hydraulic performance of plate fin, strip fin, and pin fin heat sinks - Influence of flow bypass. IEEE Transactions on Components and Packaging Technologies. 24(2): 142–9. doi: 10.1109/6144.926376.

The effect of the triangular rib usage in the plate fin heat sinks on the pressure drop, base plate temperature, and entropy generation

Year 2023, Volume: 7 Issue: 2, 99 - 108, 20.06.2023
https://doi.org/10.26701/ems.1276575

Abstract

Improving the thermal efficiency in plate fin heat sinks (PFHS) results in a reduction in the weight, volume and cost of the heat sink. This ensures long life and reliable operation of the cooled equipment. In this study, the performances of triangular ribbed PFHSs, which are formed by placing a staggered array of triangular ribs between plate fins, were numerically investigated. Pressure drop, base plate temperature and entropy generation are used for performance comparisons. Numerical heat transfer and flow analysis were performed in three-dimensional models with the help of Ansys Fluent program, which uses the finite volume method with incompressible, turbulent flow and conjugate heat transfer assumptions. The design parameters were determined as inlet velocity between 3 m/s and 9 m/s, number of plate fins 9, 12 and 15, plate fin heights 10 mm and 30 mm, triangular rib heights 0.1 mm and 0.3 mm. As a result, the heat sink base temperature decreases with the increase of velocity, fin height, number of plate fins and triangular rib height, lower pressure drop values were obtained in the case of Hrib=0.1 mm compared to the unribbed case. If the design with the least entropy production is desired as the optimum design, there is a %10.64 increase in the base temperature and a significant decrease in the pressure drop (220.88 Pa to 7.512 Pa). In this case, since the fin length is H=30 mm, the volume and weight of the heat sink also increase.

References

  • [1] Bejan, A., (1995). Entropy generation minimization. CRC press Boca Raton, FL.
  • [2] Kuru, M.N., (2023). Determination of the optimum operating conditions and geometrical dimensions of the plate fin heat sinks using teaching-learning-based-optimization algorithm. Journal of Heat and Mass Transfer. Vol. 145. doi: 10.1115/1.4056299
  • [3] Yu, X., Feng, J., Feng, Q., Wang, Q., (2005). Development of a plate-pin fin heat sink and its performance comparisons with a plate fin heat sink. Applied Thermal Engineering. 25(2–3): 173–82. doi: 10.1016/j.applthermaleng.2004.06.016.
  • [4] Yuan, W., Zhao, J., Tso, C.P., Wu, T., Liu, W., Ming, T., (2012). Numerical simulation of the thermal hydraulic performance of a plate pin fin heat sink. Applied Thermal Engineering. 48: 81–8. doi: 10.1016/j.applthermaleng.2012.04.029.
  • [5] Yamaç, H.İ., Koca, A., (2018). Pin-kanatçık, plaka-kanatçık ve plaka-pin-kanatçıkların soğutma performanslarının sayısal metod kullanılarak karşılaştırılması. Gazi Journal of Engineering Sciences. 4(2): 91–8.
  • [6] Ayli, E., Bayer, O., Aradag, S., (2016). Experimental investigation and CFD analysis of rectangular profile FINS in a square channel for forced convection regimes. International Journal of Thermal Sciences. 109: 279–90. doi: 10.1016/j.ijthermalsci.2016.06.021.
  • [7] Inci, A.B., Bayer, Ö., (2019). Experimental and numerical study on heat transfer performance of square, cylindrical and plate heat sinks in external transition flow regime. Journal of Thermal Science and Technology. 39(2): 151–61.
  • [8] Gupta, A., Kumar, M., Patil, A.K., (2019). Enhanced heat transfer in plate fin heat sink with dimples and protrusions. Heat and Mass Transfer. 55(8): 2247–60. doi: 10.1007/s00231-019-02561-w.
  • [9] Shaeri, M.R., Yaghoubi, M., (2009). Thermal enhancement from heat sinks by using perforated fins. Energy Conversion and Management. 50(5): 1264–70. doi: 10.1016/j.enconman.2009.01.021.
  • [10] Ahmed, H.E., Ahmed, M.I., (2015). Optimum thermal design of triangular, trapezoidal and rectangular grooved microchannel heat sinks. International Communications in Heat and Mass Transfer. 66: 47–57. doi: 10.1016/j.icheatmasstransfer.2015.05.009.
  • [11] Ahmed, H.E., (2016). Optimization of thermal design of ribbed flat-plate fin heat sink. Applied Thermal Engineering. 102: 1422–32. doi: 10.1016/j.applthermaleng.2016.03.119.
  • [12] Khudhur, D.S., Al-Zuhairy, R.C., and Kassim, M.S., (2022). Thermal analysis of heat transfer with different fin geometry through straight plate-fin heat sinks. International Journal of Thermal Sciences. doi: 10.1016/j.ijthermalsci.2021.107443
  • [13] Li, H.Y., Chen, C.L., Chao, S.M., Liang, G.F., (2013). Enhancing heat transfer in a plate-fin heat sink using delta winglet vortex generators. International Journal of Heat and Mass Transfer. 67: 666–77. doi: 10.1016/j.ijheatmasstransfer.2013.08.042.
  • [14] Huang, C.H., Tung, P.W., (2020). Numerical and experimental studies on an optimum Fin design problem to determine the deformed wavy-shaped heat sinks. International Journal of Thermal Sciences. 151(January): 106282. doi: 10.1016/j.ijthermalsci.2020.106282.
  • [15] Bouchenafa, R., Mohammed, H.A., Saim, R., (2019). Numerical study of the thermal and hydraulic performances of heat sink made of wavy fins. Mechanics and Mechanical Engineering. 23(1): 150–61. doi: 10.2478/mme-2019-0021.
  • [16] Incropera, F.P., DeWitt, D.P., (1996). Fundamentals of Heat and Mass Transfer. 4th Edition, New York City, New York: John Wiley & Sons, Inc.
  • [17] Ansys Inc. (2019). Ansys Fluent User’s Guide.
  • [18] White, F.M., (1991). Viscous Fluid Flow, Second Edition. New York: McGraw-Hill.
  • [19] Mangrulkar, C.K., Dhoble, A.S., Deshmukh, A.R., Mandavgane, S.A., (2017). Numerical investigation of heat transfer and friction factor characteristics from in-line cam shaped tube bank in crossflow. Applied Thermal Engineering. 110: 521–38. doi: 10.1016/j.applthermaleng.2016.08.174.
  • [20] Jonsson, H., Moshfegh, B., (2001). Modeling of the thermal and hydraulic performance of plate fin, strip fin, and pin fin heat sinks - Influence of flow bypass. IEEE Transactions on Components and Packaging Technologies. 24(2): 142–9. doi: 10.1109/6144.926376.
There are 20 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Muhammet Nasıf Kuru 0000-0002-5941-1221

Publication Date June 20, 2023
Acceptance Date May 22, 2023
Published in Issue Year 2023 Volume: 7 Issue: 2

Cite

APA Kuru, M. N. (2023). The effect of the triangular rib usage in the plate fin heat sinks on the pressure drop, base plate temperature, and entropy generation. European Mechanical Science, 7(2), 99-108. https://doi.org/10.26701/ems.1276575

Dergi TR Dizin'de Taranmaktadır.

Flag Counter