Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 1, 16 - 24, 20.03.2025
https://doi.org/10.26701/ems.1591623

Abstract

References

  • Sarkar, J., Ghosh, P., & Adil, A. (2015). A review on hybrid nanofluids: recent research, development and applications. Renewable and Sustainable Energy Reviews, 43, 164-177.
  • Choi, S. U., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab.(ANL), Argonne, IL (United States).
  • Gupta, M., Singh, V., & Said, Z. (2020). Heat transfer analysis using zinc Ferrite/water (Hybrid) nanofluids in a circular tube: An experimental investigation and development of new correlations for thermophysical and heat transfer properties. Sustainable Energy Technologies and Assessments, 39, 100720.
  • Sundar, L. S., Sintie, Y. T., Said, Z., Singh, M. K., Punnaiah, V., & Sousa, A. C. (2020). Energy, efficiency, economic impact, and heat transfer aspects of solar flat plate collector with Al2O3 nanofluids and wire coil with core rod inserts. Sustainable Energy Technologies and Assessments, 40, 100772.
  • Çakmak, N. K. (2019). Experimental Study of Thermal Conductivity of Boric Acid− Water Solutions. Heat Transfer Research, 50(17).
  • Keklikcioglu, O., Dagdevir, T., & Ozceyhan, V. (2019). Heat transfer and pressure drop investigation of graphene nanoplatelet-water and titanium dioxide-water nanofluids in a horizontal tube. Applied Thermal Engineering, 162, 114256.
  • Yarmand, H., Gharehkhani, S., Shirazi, S. F. S., Amiri, A., Alehashem, M. S., Dahari, M., & Kazi, S. N. (2016). Experimental investigation of thermo-physical properties, convective heat transfer and pressure drop of functionalized graphene nanoplatelets aqueous nanofluid in a square heated pipe. Energy Conversion and Management, 114, 38-49.
  • Akdag, U., Akcay, S., & Demiral, D. (2014). Heat transfer enhancement with laminar pulsating nanofluid flow in a wavy channel. International Communications in Heat and Mass Transfer, 59, 17-23.
  • Sahoo, R. R. (2020). Thermo-hydraulic characteristics of radiator with various shape nanoparticle-based ternary hybrid nanofluid. Powder technology, 370, 19-28.
  • Urmi, W., Rahman, M. M., & Hamzah, W. A. W. (2020). An experimental investigation on the thermophysical properties of 40% ethylene glycol based TiO2-Al2O3 hybrid nanofluids. International Communications in Heat and Mass Transfer, 116, 104663.
  • Akhavan-Behabadi, M. A., Shahidi, M., & Aligoodarz, M. R. (2015). An experimental study on heat transfer and pressure drop of MWCNT–water nano-fluid inside horizontal coiled wire inserted tube. International Communications in Heat and Mass Transfer, 63, 62-72.
  • Wusiman, K., Jeong, H., Tulugan, K., Afrianto, H., & Chung, H. (2013). Thermal performance of multi-walled carbon nanotubes (MWCNTs) in aqueous suspensions with surfactants SDBS and SDS. International Communications in Heat and Mass Transfer, 41, 28-33.
  • Sundar, L. S., Bhramara, P., Kumar, N. R., Singh, M. K., & Sousa, A. C. (2017). Experimental heat transfer, friction factor and effectiveness analysis of Fe3O4 nanofluid flow in a horizontal plain tube with return bend and wire coil inserts. International Journal of Heat and Mass Transfer, 109, 440-453.
  • Ghozatloo, A., Shariaty-Niasar, M., & Rashidi, A. M. (2013). Preparation of nanofluids from functionalized Graphene by new alkaline method and study on the thermal conductivity and stability. International Communications in Heat and Mass Transfer, 42, 89-94.
  • Chakraborty, S., & Panigrahi, P. K. (2020). Stability of nanofluid: A review. Applied Thermal Engineering, 174, 115259.
  • Das, P. K., Mallik, A. K., Ganguly, R., & Santra, A. K. (2016). Synthesis and characterization of TiO2–water nanofluids with different surfactants. International Communications in Heat and Mass Transfer, 75, 341-348.
  • Esfe, M. H., & Hajmohammad, M. H. (2017). Thermal conductivity and viscosity optimization of nanodiamond-Co3O4/EG (40: 60) aqueous nanofluid using NSGA-II coupled with RSM. Journal of Molecular Liquids, 238, 545-552.
  • Sundar, L. S., Singh, M. K., & Sousa, A. C. (2013). Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid. International communications in heat and mass transfer, 49, 17-24.
  • Javadi, F. S., Sadeghipour, S., Saidur, R., BoroumandJazi, G., Rahmati, B., Elias, M. M., & Sohel, M. R. (2013). The effects of nanofluid on thermophysical properties and heat transfer characteristics of a plate heat exchanger. International Communications in Heat and Mass Transfer, 44, 58-63.
  • Bakhtiari, R., Kamkari, B., Afrand, M., & Abdollahi, A. (2021). Preparation of stable TiO2-Graphene/Water hybrid nanofluids and development of a new correlation for thermal conductivity. Powder Technology, 385, 466-477.
  • Taherialekouhi, R., Rasouli, S., & Khosravi, A. (2019). An experimental study on stability and thermal conductivity of water-graphene oxide/aluminum oxide nanoparticles as a cooling hybrid nanofluid. International Journal of Heat and Mass Transfer, 145, 118751.
  • Akhgar, A., & Toghraie, D. (2018). An experimental study on the stability and thermal conductivity of water-ethylene glycol/TiO2-MWCNTs hybrid nanofluid: developing a new correlation. Powder Technology, 338, 806-818.
  • Kazemi, I., Sefid, M., & Afrand, M. (2020). Improving the thermal conductivity of water by adding mono & hybrid nano-additives containing graphene and silica: A comparative experimental study. International Communications in Heat and Mass Transfer, 116, 104648.
  • Adun, H., Kavaz, D., & Dagbasi, M. (2021). Review of ternary hybrid nanofluid: Synthesis, stability, thermophysical properties, heat transfer applications, and environmental effects. Journal of Cleaner Production, 328, 129525.
  • Park, H. J., Kim, J., Chang, J. Y., & Theato, P. (2008). Preparation of transparent conductive multilayered films using active pentafluorophenyl ester modified multiwalled carbon nanotubes. Langmuir, 24(18), 10467-10473.
  • Şentürk, İ., & Keklikcioğlu Çakmak, N., (2025). Use of magnetic nanoparticle loaded functionalized multiwalled carbon nanotubes for efective removal of Maxilon red GRL from aqueous solutions. Journal Of The Iranıan Chemıcal Society, vol.22, no.1, 141-159.
  • Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the american chemical society, 80(6), 1339-1339.
  • Saleh, B., & Sundar, L. S. (2021). Thermal efficiency, heat transfer, and friction factor analyses of MWCNT+ Fe3O4/water hybrid nanofluids in a solar flat plate collector under thermosyphon condition. Processes, 9(1), 180.
  • Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., ... & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS nano, 4(8), 4806-4814.
  • Xiang, Q., Yu, J., & Jaroniec, M. (2011). Enhanced photocatalytic H 2-production activity of graphene-modified titania nanosheets. Nanoscale, 3(9), 3670-3678.
  • Said, Z., Cakmak, N. K., Sharma, P., Sundar, L. S., Inayat, A., Keklikcioglu, O., & Li, C. (2022). Synthesis, stability, density, viscosity of ethylene glycol-based ternary hybrid nanofluids: Experimental investigations and model-prediction using modern machine learning techniques. Powder Technology, 400, 117190.
  • Keklikcioglu Cakmak, N. (2020). The impact of surfactants on the stability and thermal conductivity of graphene oxide de-ionized water nanofluids. Journal of Thermal Analysis and Calorimetry, 139(3), 1895-1902.
  • Basu, A. K., Sah, A. N., Pradhan, A., & Bhattacharya, S. (2019). Poly-L-Lysine functionalised MWCNT-rGO nanosheets based 3-d hybrid structure for femtomolar level cholesterol detection using cantilever based sensing platform. Scientific reports, 9(1), 3686.
  • Han, C. L., Zou, A. L., Wang, G. D., Liu, Y., Li, N., Zhang, H. X., ... & Blackie, E. (2022). Study on 3D multi-performance composite films of Fe3O4 decorated CNTs/graphene oxide. Diamond and Related Materials, 124, 108953.
  • Zhou, J., Pan, K., Qu, G., Ji, W., Ning, P., Tang, H., & Xie, R. (2022). rGO/MWCNTs-COOH 3D hybrid network as a high-performance electrochemical sensing platform of screen-printed carbon electrodes with an ultra-wide detection range of Cd (II) and Pb (II). Chemical Engineering Journal, 449, 137853.
  • Das, R., Bee Abd Hamid, S., Eaqub Ali, M., Ramakrishna, S., & Yongzhi, W. (2015). Carbon nanotubes characterization by X-ray powder diffraction–a review. Current Nanoscience, 11(1), 23-35.
  • Salam, M. A., & Burk, R. (2017). Synthesis and characterization of multi-walled carbon nanotubes modified with octadecylamine and polyethylene glycol. Arabian Journal of Chemistry, 10, S921-S927.
  • Al-Jammal, N., Abdullah, T. A., Juzsakova, T., Zsirka, B., Cretescu, I., Vágvölgyi, V., ... & Domokos, E. (2020). Functionalized carbon nanotubes for hydrocarbon removal from water. Journal of Environmental Chemical Engineering, 8(2), 103570.
  • Zou, H., Li, X., Zhang, Y., Wang, Z., Zhuo, B., Ti, P., & Yuan, Q. (2021). Effects of different hot pressing processes and NFC/GO/CNT composite proportions on the performance of conductive membranes. Materials & Design, 198, 109334.
  • Siburian, R., Sihotang, H., Raja, S. L., Supeno, M., & Simanjuntak, C. (2018). New route to synthesize of graphene nano sheets. Oriental Journal of Chemistry, 34(1), 182.
  • Zeng, Y., Hao, R., Xing, B., Hou, Y., & Xu, Z. (2010). One-pot synthesis of Fe 3 O 4 nanoprisms with controlled electrochemical properties. Chemical communications, 46(22), 3920-3922.
  • Kestin, J., Sengers, J. V., Kamgar‐Parsi, B., & Sengers, J. L. (1984). Thermophysical properties of fluid H2O. Journal of Physical and Chemical Reference Data, 13(1), 175-183.
  • Altun, A., Şara, O. N., & Şimşek, B. (2021). A comprehensive statistical approach for determining the effect of two non-ionic surfactants on thermal conductivity and density of Al2O3–water-based nanofluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 626, 127099.
  • Altun, A., Şara, O., & Doruk, S. (2022). Sds Surfactant Effects On Stability and Thermophysical Properties Of Al2o3–Water Based Nanofluıds. Konya Journal of Engineering Sciences, 10(3), 599-612.
  • Selimefendigil, F., Okulu, D., & Oztop, H. F. (2024). Application of ternary nanofluid and rotating cylinders in the cooling system of photovoltaic/thermoelectric generator coupled module and computational cost reduction. Applied Thermal Engineering, 250, 123436.
  • Sriharan, G., Harikrishnan, S., & Oztop, H. F. (2023). A review on thermophysical properties, preparation, and heat transfer enhancement of conventional and hybrid nanofluids utilized in micro and mini channel heat sink. Sustainable Energy Technologies and Assessments, 58, 103327.

Experimental study on the thermal conductivity of a water-based ternary hybrid nanofluid incorporating MWCNTs-COOH-Fe3O4-rGO

Year 2025, Volume: 9 Issue: 1, 16 - 24, 20.03.2025
https://doi.org/10.26701/ems.1591623

Abstract

This study explores the thermal conductivity characteristics of ternary nanofluids composed of water-based Fe3O4-decorated carboxylated multi-walled carbon nanotubes (MWCNT-COOH), reduced graphene oxide (rGO), and Fe3O4-CNT-COOH/rGO nanocomposites. The investigation focuses on the influence of temperature and nanocomposite concentration. Ultrasonic probes were employed to ensure the stability of the nanofluid, and its structural properties were analyzed using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). Thermal conductivity measurements were conducted using a KD-2 Pro thermal analyzer across a temperature range of 25-60 °C and a nanocomposite mass fraction range of 0.025-0.1%. Results demonstrated that the thermal conductivity ratio increased with higher solid volume fractions and elevated temperatures. Notably, the impact of temperature became more significant at higher nanocomposite concentrations. The findings also revealed a maximum thermal conductivity enhancement of approximately 50%, achieved at a nanocomposite fraction of 0.1% and a temperature of 60 °C.

References

  • Sarkar, J., Ghosh, P., & Adil, A. (2015). A review on hybrid nanofluids: recent research, development and applications. Renewable and Sustainable Energy Reviews, 43, 164-177.
  • Choi, S. U., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab.(ANL), Argonne, IL (United States).
  • Gupta, M., Singh, V., & Said, Z. (2020). Heat transfer analysis using zinc Ferrite/water (Hybrid) nanofluids in a circular tube: An experimental investigation and development of new correlations for thermophysical and heat transfer properties. Sustainable Energy Technologies and Assessments, 39, 100720.
  • Sundar, L. S., Sintie, Y. T., Said, Z., Singh, M. K., Punnaiah, V., & Sousa, A. C. (2020). Energy, efficiency, economic impact, and heat transfer aspects of solar flat plate collector with Al2O3 nanofluids and wire coil with core rod inserts. Sustainable Energy Technologies and Assessments, 40, 100772.
  • Çakmak, N. K. (2019). Experimental Study of Thermal Conductivity of Boric Acid− Water Solutions. Heat Transfer Research, 50(17).
  • Keklikcioglu, O., Dagdevir, T., & Ozceyhan, V. (2019). Heat transfer and pressure drop investigation of graphene nanoplatelet-water and titanium dioxide-water nanofluids in a horizontal tube. Applied Thermal Engineering, 162, 114256.
  • Yarmand, H., Gharehkhani, S., Shirazi, S. F. S., Amiri, A., Alehashem, M. S., Dahari, M., & Kazi, S. N. (2016). Experimental investigation of thermo-physical properties, convective heat transfer and pressure drop of functionalized graphene nanoplatelets aqueous nanofluid in a square heated pipe. Energy Conversion and Management, 114, 38-49.
  • Akdag, U., Akcay, S., & Demiral, D. (2014). Heat transfer enhancement with laminar pulsating nanofluid flow in a wavy channel. International Communications in Heat and Mass Transfer, 59, 17-23.
  • Sahoo, R. R. (2020). Thermo-hydraulic characteristics of radiator with various shape nanoparticle-based ternary hybrid nanofluid. Powder technology, 370, 19-28.
  • Urmi, W., Rahman, M. M., & Hamzah, W. A. W. (2020). An experimental investigation on the thermophysical properties of 40% ethylene glycol based TiO2-Al2O3 hybrid nanofluids. International Communications in Heat and Mass Transfer, 116, 104663.
  • Akhavan-Behabadi, M. A., Shahidi, M., & Aligoodarz, M. R. (2015). An experimental study on heat transfer and pressure drop of MWCNT–water nano-fluid inside horizontal coiled wire inserted tube. International Communications in Heat and Mass Transfer, 63, 62-72.
  • Wusiman, K., Jeong, H., Tulugan, K., Afrianto, H., & Chung, H. (2013). Thermal performance of multi-walled carbon nanotubes (MWCNTs) in aqueous suspensions with surfactants SDBS and SDS. International Communications in Heat and Mass Transfer, 41, 28-33.
  • Sundar, L. S., Bhramara, P., Kumar, N. R., Singh, M. K., & Sousa, A. C. (2017). Experimental heat transfer, friction factor and effectiveness analysis of Fe3O4 nanofluid flow in a horizontal plain tube with return bend and wire coil inserts. International Journal of Heat and Mass Transfer, 109, 440-453.
  • Ghozatloo, A., Shariaty-Niasar, M., & Rashidi, A. M. (2013). Preparation of nanofluids from functionalized Graphene by new alkaline method and study on the thermal conductivity and stability. International Communications in Heat and Mass Transfer, 42, 89-94.
  • Chakraborty, S., & Panigrahi, P. K. (2020). Stability of nanofluid: A review. Applied Thermal Engineering, 174, 115259.
  • Das, P. K., Mallik, A. K., Ganguly, R., & Santra, A. K. (2016). Synthesis and characterization of TiO2–water nanofluids with different surfactants. International Communications in Heat and Mass Transfer, 75, 341-348.
  • Esfe, M. H., & Hajmohammad, M. H. (2017). Thermal conductivity and viscosity optimization of nanodiamond-Co3O4/EG (40: 60) aqueous nanofluid using NSGA-II coupled with RSM. Journal of Molecular Liquids, 238, 545-552.
  • Sundar, L. S., Singh, M. K., & Sousa, A. C. (2013). Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid. International communications in heat and mass transfer, 49, 17-24.
  • Javadi, F. S., Sadeghipour, S., Saidur, R., BoroumandJazi, G., Rahmati, B., Elias, M. M., & Sohel, M. R. (2013). The effects of nanofluid on thermophysical properties and heat transfer characteristics of a plate heat exchanger. International Communications in Heat and Mass Transfer, 44, 58-63.
  • Bakhtiari, R., Kamkari, B., Afrand, M., & Abdollahi, A. (2021). Preparation of stable TiO2-Graphene/Water hybrid nanofluids and development of a new correlation for thermal conductivity. Powder Technology, 385, 466-477.
  • Taherialekouhi, R., Rasouli, S., & Khosravi, A. (2019). An experimental study on stability and thermal conductivity of water-graphene oxide/aluminum oxide nanoparticles as a cooling hybrid nanofluid. International Journal of Heat and Mass Transfer, 145, 118751.
  • Akhgar, A., & Toghraie, D. (2018). An experimental study on the stability and thermal conductivity of water-ethylene glycol/TiO2-MWCNTs hybrid nanofluid: developing a new correlation. Powder Technology, 338, 806-818.
  • Kazemi, I., Sefid, M., & Afrand, M. (2020). Improving the thermal conductivity of water by adding mono & hybrid nano-additives containing graphene and silica: A comparative experimental study. International Communications in Heat and Mass Transfer, 116, 104648.
  • Adun, H., Kavaz, D., & Dagbasi, M. (2021). Review of ternary hybrid nanofluid: Synthesis, stability, thermophysical properties, heat transfer applications, and environmental effects. Journal of Cleaner Production, 328, 129525.
  • Park, H. J., Kim, J., Chang, J. Y., & Theato, P. (2008). Preparation of transparent conductive multilayered films using active pentafluorophenyl ester modified multiwalled carbon nanotubes. Langmuir, 24(18), 10467-10473.
  • Şentürk, İ., & Keklikcioğlu Çakmak, N., (2025). Use of magnetic nanoparticle loaded functionalized multiwalled carbon nanotubes for efective removal of Maxilon red GRL from aqueous solutions. Journal Of The Iranıan Chemıcal Society, vol.22, no.1, 141-159.
  • Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the american chemical society, 80(6), 1339-1339.
  • Saleh, B., & Sundar, L. S. (2021). Thermal efficiency, heat transfer, and friction factor analyses of MWCNT+ Fe3O4/water hybrid nanofluids in a solar flat plate collector under thermosyphon condition. Processes, 9(1), 180.
  • Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., ... & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS nano, 4(8), 4806-4814.
  • Xiang, Q., Yu, J., & Jaroniec, M. (2011). Enhanced photocatalytic H 2-production activity of graphene-modified titania nanosheets. Nanoscale, 3(9), 3670-3678.
  • Said, Z., Cakmak, N. K., Sharma, P., Sundar, L. S., Inayat, A., Keklikcioglu, O., & Li, C. (2022). Synthesis, stability, density, viscosity of ethylene glycol-based ternary hybrid nanofluids: Experimental investigations and model-prediction using modern machine learning techniques. Powder Technology, 400, 117190.
  • Keklikcioglu Cakmak, N. (2020). The impact of surfactants on the stability and thermal conductivity of graphene oxide de-ionized water nanofluids. Journal of Thermal Analysis and Calorimetry, 139(3), 1895-1902.
  • Basu, A. K., Sah, A. N., Pradhan, A., & Bhattacharya, S. (2019). Poly-L-Lysine functionalised MWCNT-rGO nanosheets based 3-d hybrid structure for femtomolar level cholesterol detection using cantilever based sensing platform. Scientific reports, 9(1), 3686.
  • Han, C. L., Zou, A. L., Wang, G. D., Liu, Y., Li, N., Zhang, H. X., ... & Blackie, E. (2022). Study on 3D multi-performance composite films of Fe3O4 decorated CNTs/graphene oxide. Diamond and Related Materials, 124, 108953.
  • Zhou, J., Pan, K., Qu, G., Ji, W., Ning, P., Tang, H., & Xie, R. (2022). rGO/MWCNTs-COOH 3D hybrid network as a high-performance electrochemical sensing platform of screen-printed carbon electrodes with an ultra-wide detection range of Cd (II) and Pb (II). Chemical Engineering Journal, 449, 137853.
  • Das, R., Bee Abd Hamid, S., Eaqub Ali, M., Ramakrishna, S., & Yongzhi, W. (2015). Carbon nanotubes characterization by X-ray powder diffraction–a review. Current Nanoscience, 11(1), 23-35.
  • Salam, M. A., & Burk, R. (2017). Synthesis and characterization of multi-walled carbon nanotubes modified with octadecylamine and polyethylene glycol. Arabian Journal of Chemistry, 10, S921-S927.
  • Al-Jammal, N., Abdullah, T. A., Juzsakova, T., Zsirka, B., Cretescu, I., Vágvölgyi, V., ... & Domokos, E. (2020). Functionalized carbon nanotubes for hydrocarbon removal from water. Journal of Environmental Chemical Engineering, 8(2), 103570.
  • Zou, H., Li, X., Zhang, Y., Wang, Z., Zhuo, B., Ti, P., & Yuan, Q. (2021). Effects of different hot pressing processes and NFC/GO/CNT composite proportions on the performance of conductive membranes. Materials & Design, 198, 109334.
  • Siburian, R., Sihotang, H., Raja, S. L., Supeno, M., & Simanjuntak, C. (2018). New route to synthesize of graphene nano sheets. Oriental Journal of Chemistry, 34(1), 182.
  • Zeng, Y., Hao, R., Xing, B., Hou, Y., & Xu, Z. (2010). One-pot synthesis of Fe 3 O 4 nanoprisms with controlled electrochemical properties. Chemical communications, 46(22), 3920-3922.
  • Kestin, J., Sengers, J. V., Kamgar‐Parsi, B., & Sengers, J. L. (1984). Thermophysical properties of fluid H2O. Journal of Physical and Chemical Reference Data, 13(1), 175-183.
  • Altun, A., Şara, O. N., & Şimşek, B. (2021). A comprehensive statistical approach for determining the effect of two non-ionic surfactants on thermal conductivity and density of Al2O3–water-based nanofluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 626, 127099.
  • Altun, A., Şara, O., & Doruk, S. (2022). Sds Surfactant Effects On Stability and Thermophysical Properties Of Al2o3–Water Based Nanofluıds. Konya Journal of Engineering Sciences, 10(3), 599-612.
  • Selimefendigil, F., Okulu, D., & Oztop, H. F. (2024). Application of ternary nanofluid and rotating cylinders in the cooling system of photovoltaic/thermoelectric generator coupled module and computational cost reduction. Applied Thermal Engineering, 250, 123436.
  • Sriharan, G., Harikrishnan, S., & Oztop, H. F. (2023). A review on thermophysical properties, preparation, and heat transfer enhancement of conventional and hybrid nanofluids utilized in micro and mini channel heat sink. Sustainable Energy Technologies and Assessments, 58, 103327.
There are 46 citations in total.

Details

Primary Language English
Subjects Nanomaterials, Nanoscale Characterisation
Journal Section Research Article
Authors

Neşe Keklikcioğlu Çakmak 0000-0002-8634-9232

Early Pub Date March 9, 2025
Publication Date March 20, 2025
Submission Date November 26, 2024
Acceptance Date March 2, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Keklikcioğlu Çakmak, N. (2025). Experimental study on the thermal conductivity of a water-based ternary hybrid nanofluid incorporating MWCNTs-COOH-Fe3O4-rGO. European Mechanical Science, 9(1), 16-24. https://doi.org/10.26701/ems.1591623

Dergi TR Dizin'de Taranmaktadır.

Flag Counter