Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 1, 46 - 58, 20.03.2025
https://doi.org/10.26701/ems.1600894

Abstract

References

  • Hussain, M., Khan, M. K., & Pathak, M. (2023). Thermal analysis of phase change material encapsulated li-ion battery pack using multi-scale multi-dimensional framework. Journal of Energy Storage, 65, 107290.
  • Khan, M. M., Alkhedher, M., Ramadan, M., & Ghazal, M. (2023). Hybrid PCM-based thermal management for lithium-ion batteries: Trends and challenges. Journal of Energy Storage, 73, 108775.
  • Khan, S. A., Xiangrong, L. I., Lau, K. T., Dong, K., He, S., Wabaidur, S. M.,& Zhao, J. (2024). Metallic PCM-based battery thermal management system for fast charging/discharging applications. International Communications in Heat and Mass Transfer, 155, 107473.
  • Hemmerling, J., Fill, A., & Birke, K. P. (2024). Analysis of the age-, current-and temperature-dependent expansion of cylindrical NCM| Graphite Li-ion battery cells using strain gauges. Journal of Energy Storage, 99, 113177.
  • Dey, H., Pati, S., Randive, P. R., & Baranyi, L. (2024). Effect of finned networks on PCM based battery thermal management system for cylindrical Li-ion batteries. Case Studies in Thermal Engineering, 59, 104572.
  • Han, J., Seo, J., Kim, J., Koo, Y., Ryu, M., & Lee, B. J. (2024). Predicting temperature of a Li-ion battery under dynamic current using long short-term memory. Case Studies in Thermal Engineering, 63, 105246.
  • Murali, G., Sravya, G. S. N., Jaya, J., & Vamsi, V. N. (2021). A review on hybrid thermal management of battery packs and it’s cooling performance by enhanced PCM. Renewable and Sustainable Energy Reviews, 150, 111513.
  • Li, J., Jiaqiang, E., Ding, J., Cai, L., & Luo, B. (2024). Effect analysis on the low-temperature preheating performance of a novel micro-combustor air preheater for the cold start of the Li-ion battery packs. Energy, 312, 133606.
  • Han, J., Seo, J., Kim, J., Koo, Y., Ryu, M., & Lee, B. J. (2024). Predicting temperature of a Li-ion battery under dynamic current using long short-term memory. Case Studies in Thermal Engineering, 63, 105246.
  • Lin, X. W., Li, Y. B., Wu, W. T., Zhou, Z. F., & Chen, B. (2024). Advances on two-phase heat transfer for lithium-ion battery thermal management. Renewable and Sustainable Energy Reviews, 189, 114052.
  • Zhang, F., Wang, F., Zhu, Y., & He, Y. (2024). Structural optimization of thermal management system for bionic liquid cold battery based on fuzzy grey correlation analysis. Applied Thermal Engineering, 249, 123347.
  • Xu, G., Jiang, M., Li, J., Xuan, X., Li, J., Lu, T., & Pan, L. (2024). Machine learning-accelerated discovery and design of electrode materials and electrolytes for lithium ion batteries. Energy Storage Materials, 103710.
  • Li, Y., Li, B., Bei, S., Li, L., Zhang, L., & Hu, M. (2024). Thermal management of lithium-ion battery modules optimized based on the design of cold plate with convex pack structure. Applied Thermal Engineering, 257, 124186.
  • Shetty, D. D., Sulthan, M., Zuber, M., Badruddin, I. A., & Kini, C. R. (2022). Computational design and analysis of a novel battery thermal management system of a single 26650 Li-ion battery cell for electric vehicle application. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 93(2), 61-75.
  • Paccha-Herrera, E., Calderón-Muñoz, W. R., Orchard, M., Jaramillo, F., & Medjaher, K. (2020). Thermal modeling approaches for a licoo2 lithium-ion battery—a comparative study with experimental validation. Batteries, 6(3), 40.
  • Fluent Ansys, “Ansys Fluent Theory Guide,” ANSYS Inc., USA, vol. 15317, no. July, pp. 819-821, 2021
  • Torun, E., & Buyruk, E. (2024). Lityum İyon Pillerde Farklı Deşarj Hızlarında Oluşan Sıcaklık Profillerinin Deneysel ve Sayısal Olarak Karşılaştırılması. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(2), 622-637.
  • E. Paccha-Herrera, W. R. Calderón-Muñoz, M. Orchard, F. Jaramillo, and K. Medjaher, “Thermal modeling approaches for a LiCoO₂ lithium-ion battery—A comparative study with experimental validation,” Batteries, vol. 6, no. 3, p. 40, 2020, doi: 10.3390/batteries6030040.
  • Paccha-Herrera, E., Calderón-Muñoz, W. R., Orchard, M., Jaramillo, F., & Medjaher, K. (2020). Thermal modeling approaches for a licoo2 lithium-ion battery—a comparative study with experimental validation. Batteries, 6(3), 40.

Thermal and electrical analysis of 26650 li-ion batteries in series connection using the NTGK model and virtual simulations

Year 2025, Volume: 9 Issue: 1, 46 - 58, 20.03.2025
https://doi.org/10.26701/ems.1600894

Abstract

Lithium-ion batteries are extensively used in various renewable sources such as renewable energy storage systems, electric vehicles, and portable electric vehicles due to their storage properties. However, since they are significantly affected by ambient temperature, their lifetime and safety issues in general negatively affect their electrical performance. In order to ensure that batteries achieve their optimum potential, it is necessary to understand the interaction between charge and discharge rates and temperature changes very well. In this study, the electrical characteristics of 26650 lithium-ion batteries were analyzed in series under different environmental conditions and different discharge rates. To understand the relationship between environmental temperatures and battery performance, Newman, Tiedemann, Gu, and Kim (NTGK) evaluated the effectiveness of previously used models in predicting these effects. The Ansys Battery Ntgk model was used to predict the temperature behavior and voltage variations under different outdoor temperature conditions. In this study, four ambient temperatures (273 K, 283 K, 298 K, and 318 K) and four discharge rates (0.5C, 1C, 1.5C, and 2C) were investigated to study the thermal characteristics and voltage variations. The mesh independence study was carried out in detail at the beginning of the analysis to validate the simulation results. The results show that the discharge time is significantly reduced due to increased internal resistance and electrochemical side reactions. The 1S1P battery design exhibits a maximum internal temperature of 303.2 K at an ambient temperature of 273.15 K and 336.7 K at an ambient temperature of 318.15 K, while the 2S1P battery design exhibits an even higher maximum temperature of 341.3 K at an ambient temperature of 318.15 K, indicating that compound heat buildup occurs in series connections.

References

  • Hussain, M., Khan, M. K., & Pathak, M. (2023). Thermal analysis of phase change material encapsulated li-ion battery pack using multi-scale multi-dimensional framework. Journal of Energy Storage, 65, 107290.
  • Khan, M. M., Alkhedher, M., Ramadan, M., & Ghazal, M. (2023). Hybrid PCM-based thermal management for lithium-ion batteries: Trends and challenges. Journal of Energy Storage, 73, 108775.
  • Khan, S. A., Xiangrong, L. I., Lau, K. T., Dong, K., He, S., Wabaidur, S. M.,& Zhao, J. (2024). Metallic PCM-based battery thermal management system for fast charging/discharging applications. International Communications in Heat and Mass Transfer, 155, 107473.
  • Hemmerling, J., Fill, A., & Birke, K. P. (2024). Analysis of the age-, current-and temperature-dependent expansion of cylindrical NCM| Graphite Li-ion battery cells using strain gauges. Journal of Energy Storage, 99, 113177.
  • Dey, H., Pati, S., Randive, P. R., & Baranyi, L. (2024). Effect of finned networks on PCM based battery thermal management system for cylindrical Li-ion batteries. Case Studies in Thermal Engineering, 59, 104572.
  • Han, J., Seo, J., Kim, J., Koo, Y., Ryu, M., & Lee, B. J. (2024). Predicting temperature of a Li-ion battery under dynamic current using long short-term memory. Case Studies in Thermal Engineering, 63, 105246.
  • Murali, G., Sravya, G. S. N., Jaya, J., & Vamsi, V. N. (2021). A review on hybrid thermal management of battery packs and it’s cooling performance by enhanced PCM. Renewable and Sustainable Energy Reviews, 150, 111513.
  • Li, J., Jiaqiang, E., Ding, J., Cai, L., & Luo, B. (2024). Effect analysis on the low-temperature preheating performance of a novel micro-combustor air preheater for the cold start of the Li-ion battery packs. Energy, 312, 133606.
  • Han, J., Seo, J., Kim, J., Koo, Y., Ryu, M., & Lee, B. J. (2024). Predicting temperature of a Li-ion battery under dynamic current using long short-term memory. Case Studies in Thermal Engineering, 63, 105246.
  • Lin, X. W., Li, Y. B., Wu, W. T., Zhou, Z. F., & Chen, B. (2024). Advances on two-phase heat transfer for lithium-ion battery thermal management. Renewable and Sustainable Energy Reviews, 189, 114052.
  • Zhang, F., Wang, F., Zhu, Y., & He, Y. (2024). Structural optimization of thermal management system for bionic liquid cold battery based on fuzzy grey correlation analysis. Applied Thermal Engineering, 249, 123347.
  • Xu, G., Jiang, M., Li, J., Xuan, X., Li, J., Lu, T., & Pan, L. (2024). Machine learning-accelerated discovery and design of electrode materials and electrolytes for lithium ion batteries. Energy Storage Materials, 103710.
  • Li, Y., Li, B., Bei, S., Li, L., Zhang, L., & Hu, M. (2024). Thermal management of lithium-ion battery modules optimized based on the design of cold plate with convex pack structure. Applied Thermal Engineering, 257, 124186.
  • Shetty, D. D., Sulthan, M., Zuber, M., Badruddin, I. A., & Kini, C. R. (2022). Computational design and analysis of a novel battery thermal management system of a single 26650 Li-ion battery cell for electric vehicle application. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 93(2), 61-75.
  • Paccha-Herrera, E., Calderón-Muñoz, W. R., Orchard, M., Jaramillo, F., & Medjaher, K. (2020). Thermal modeling approaches for a licoo2 lithium-ion battery—a comparative study with experimental validation. Batteries, 6(3), 40.
  • Fluent Ansys, “Ansys Fluent Theory Guide,” ANSYS Inc., USA, vol. 15317, no. July, pp. 819-821, 2021
  • Torun, E., & Buyruk, E. (2024). Lityum İyon Pillerde Farklı Deşarj Hızlarında Oluşan Sıcaklık Profillerinin Deneysel ve Sayısal Olarak Karşılaştırılması. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(2), 622-637.
  • E. Paccha-Herrera, W. R. Calderón-Muñoz, M. Orchard, F. Jaramillo, and K. Medjaher, “Thermal modeling approaches for a LiCoO₂ lithium-ion battery—A comparative study with experimental validation,” Batteries, vol. 6, no. 3, p. 40, 2020, doi: 10.3390/batteries6030040.
  • Paccha-Herrera, E., Calderón-Muñoz, W. R., Orchard, M., Jaramillo, F., & Medjaher, K. (2020). Thermal modeling approaches for a licoo2 lithium-ion battery—a comparative study with experimental validation. Batteries, 6(3), 40.
There are 19 citations in total.

Details

Primary Language English
Subjects Energy, Thermal Power Systems
Journal Section Research Article
Authors

Metin Uzun 0000-0002-0744-3491

Early Pub Date March 13, 2025
Publication Date March 20, 2025
Submission Date December 15, 2024
Acceptance Date March 6, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Uzun, M. (2025). Thermal and electrical analysis of 26650 li-ion batteries in series connection using the NTGK model and virtual simulations. European Mechanical Science, 9(1), 46-58. https://doi.org/10.26701/ems.1600894

Dergi TR Dizin'de Taranmaktadır.

Flag Counter