Araştırma Makalesi
BibTex RIS Kaynak Göster

MAKİNE ÖĞRENMESİ ALGORİTMALARI İLE SATIŞ TAHMİNİ

Yıl 2021, Cilt: 32 Sayı: 2, 307 - 320, 31.08.2021
https://doi.org/10.46465/endustrimuhendisligi.811183

Öz

Günümüz dijital dünyasında satın alma gittikçe arttığından veriler çok büyük boyutlara ulaşmıştır. Endüstrinin getirdiği kavramlardan en belirgini ise çok boyutluluk laneti olmuştur. Bu sebeple işletmeler satın alma kararlarını alırken büyük zorluk yaşamaktadır. Uzun ya da kısa vadede satış tahmininin doğru yapılamaması müşteri memnuniyetsizliği, para kaybı, ham madde ihtiyacı gibi birçok soruna yol açacaktır. Tedarik zinciri elemanlarından üretici, perakendeci, tedarikçi ve müşteriye kadar birçok taraf yanlış ya da eksik satış tahmininden zarar görebilir. Yapay zekâ çağının getirdiği yeniliklerden olan makine öğrenmesi de birçok mühendislik uygulamasının getirdiği sorunlara olduğu gibi satış tahmini problemlerine de hızlı şekilde cevap verebilecek bir alandır. Bu çalışmada uçtan uca bir makine öğrenmesi proje süreci ele alınmıştır. Herhangi bir makine öğrenmesi projesinin adımları ve veriye yaklaşım boyutu tanıtılmıştır. Uygulama bölümünde makine öğrenmesi algoritmalarından doğrusal regresyon, Ridge, Lasso, ElasticNet, K-en yakın komşu ve Rastgele Orman algoritmaları kullanılarak gerçek veri seti için bir satış tahmin modeli geliştirilmiştir. Geliştirilen modelde en düşük hatayı veren algoritma Rastgele Orman algoritması olmuştur.

Kaynakça

  • Antipov, E. A., & Pokryshevskaya, E. B. (2020). Interpretable machine learning for demand modeling with high-dimensional data using Gradient Boosting Machines and Shapley values. Journal of Revenue and Pricing Management, 19(5), 355–364. doi: https://doi.org/10.1057/s41272-020-00236-4
  • Armstrong, J. S. (1989). Combining Forecasts: The End of the Beginning or the Beginning of the End? International Journal of Forecasting, 5(4), 585–588. doi: https://doi.org/10.1016/0169-2070(89)90013-7
  • Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd, S. (2017). Quantum machine learning. Nature, 549(7671), 195–202. doi: https://doi.org/10.1038/nature23474
  • Catal, C., Ece, K., Arslan, B., & Akbulut, A. (2019). Benchmarking of Regression Algorithms and Time Series Analysis Techniques for Sales Forecasting. Balkan Journal of Electrical and Computer Engineering, 7(1), 20–26. doi: https://doi.org/10.17694/bajece.494920
  • Dietterich, T. G. (1997). Machine-Learning Research. AI Magazine, 18(4), 97–136. doi: https://doi.org/10.1145/1056743.1056744
  • Gokpinar, E., Ebegil, M., & Gokpinar, F. (2017). A Review on Shrinkage Parameters in Ridge Regression. GU Journal of Science, 30(4), 565–582. Erişim adresi: https://dergipark.org.tr/tr/download/article-file/380312
  • Grigorev, A. (2020). Machine Learning Bookcamp MEAP V06 (A. Books (ed.)). Copyright 2020 Manning Publications. Erişim adresi: https://www.manning.com/books/machine-learning-bookcamp
  • Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of Statistical Learning. In Vol.1 No.10. New York: Springer series in statistics. doi: https://doi.org/10.1007/978-1-4419-9863-7_941
  • Helmini, S., Jihan, N., Jayasinghe, M., & Perera, S. (2019). Sales forecasting using multivariate long short term memory network models. PeerJ PrePrints, 7, e27712v1. doi: https://doi.org/10.7287/peerj.preprints.27712
  • Hoerl, A. E., & Kennard, R. W. (1970). Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics, 12(1), 55–67. doi: https://doi.org/10.1080/00401706.1970.10488634
  • Jain, A., Menon, M. N., & Chandra, S. (2015). Sales Forecasting for Retail Chains. 1–6. Erişim adresi: https://pdfs.semanticscholar.org/76a2/44f4da1d29170a9f91d381a5e12dc7ad2c0f.pdf
  • Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. Erişim adresi: https://science.sciencemag.org/content/349/6245/255
  • Komorowski, M., Marshall, D. C., Salciccioli, J. D., & Crutain, Y. (2016). Exploratory Data Analysis. In Secondary Analysis of Electronic Health Records (pp. 185–203). doi: https://doi.org/10.1007/978-3-319-43742-2
  • Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. R News, 2(3), 18–22.
  • Mitchell, T. M. (1997). Machine Learning. In McGraw-Hill Science/Engineering/Math. doi: https://doi.org/10.1007/978-3-642-21004-4_10
  • Nilsson, N. J. (2014). Principles of Artificial Intelligence. In Morgan Kauffmann. Erişim adresi: https://stacks.stanford.edu/file/druid:zd294jv9941/zd294jv9941.pdf
  • Papacharalampous, G., Tyralis, H., & Koutsoyiannis, D. (2018). Univariate Time Series Forecasting of Temperature and Precipitation with a Focus on Machine Learning Algorithms: a Multiple-Case Study from Greece. Water Resources Management, 32(15), 5207–5239. doi: https://doi.org/10.1007/s11269-018-2155-6
  • Pavlyshenko, B. M. (2019). Machine-Learning Models for Sales Time Series Forecasting. Data, 4(1), 1–11. doi: https://doi.org/10.3390/data4010015
  • Rincon-Patino, J., Lasso, E., & Corrales, J. C. (2018). Estimating Avocado Sales Using Machine Learning Algorithms and Weather Data. Sustainability, 10(10), 12. doi: https://doi.org/10.3390/su10103498
  • Rubin, D. (1976). Inference and Missing Data. Biometrika, 63(3), 581–592. doi: https://doi.org/10.1093/biomet/63.3.581
  • Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3(3), 210–229. doi: https://doi.org/10.1147/rd.441.0206
  • Sathya, R., & Abraham, A. (2013). Comparison of supervised and unsupervised learning algorithms for pattern classification. International Journal of Advanced Research in Artificial Intelligence, 2(2), 34–38. Erişim adresi: https://www.researchgate.net/publication/273246843_Comparison_of_Supervised_and_Unsupervised_Learning_Algorithms_for_Pattern_Classification
  • Siau, K., & Wang, W. (2018). Building Trust in Artificial Intelligence, Machine learning, and Robotics. Cutter Business Technology Journal, 31(2), 47–53. Erişim adresi: https://www.researchgate.net/publication/324006061_Building_Trust_in_Artificial_Intelligence_Machine_Learning_and_Robotics
  • Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267–288. doi: https://doi.org/10.1093/ej/31.121.133
  • Tukey, J. W. (1977). Exploratory Data Analysis (Vol. 2). Pearson. doi: https://doi.org/10.1007/978-3-662-45006-2_9
  • Velleman, P. F., & Hoaglin, D. C. (1981). Applications, Basics, and Computing of Exploratory Data Analysis. In Duxbury Press. Erişim adresi: https://ecommons.cornell.edu/handle/1813/78
  • Verstraete, G., Aghezzaf, E. H., & Desmet, B. (2020). A leading macroeconomic indicators’ based framework to automatically generate tactical sales forecasts. Computers and Industrial Engineering, 139(August 2019), 106169. doi: https://doi.org/10.1016/j.cie.2019.106169
  • Weng, T., Liu, W., & Xiao, J. (2019). Supply chain sales forecasting based on lightGBM and LSTM combination model. Industrial Management and Data Systems, 120(2), 265–279. doi: https://doi.org/10.1108/IMDS-03-2019-0170
  • Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 67(2), 301–320. doi: https://doi.org/10.1111/j.1467-9868.2005.00503.x
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Endüstri Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Emine Nur Nacar 0000-0003-3785-1928

Babek Erdebilli (b.d.rouyendegh) 0000-0001-8860-3903

Yayımlanma Tarihi 31 Ağustos 2021
Kabul Tarihi 1 Temmuz 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 32 Sayı: 2

Kaynak Göster

APA Nacar, E. N., & Erdebilli (b.d.rouyendegh), B. (2021). MAKİNE ÖĞRENMESİ ALGORİTMALARI İLE SATIŞ TAHMİNİ. Endüstri Mühendisliği, 32(2), 307-320. https://doi.org/10.46465/endustrimuhendisligi.811183

19736      14617      26287       15235           15236           15240      15242