Araştırma Makalesi
BibTex RIS Kaynak Göster

ARIMA VE SİNİR AĞLARINI KULLANARAK PARK YERİ UYGUNLUĞUNUN TAHMİNİ

Yıl 2023, Cilt: 34 Sayı: 1, 86 - 108, 27.04.2023
https://doi.org/10.46465/endustrimuhendisligi.1241453

Öz

Sürücülerin park yerlerinin doluluk oranları hakkında bilgi sahibi olmaları, park yeri bulmak için yapılan yolculuklardan kaynaklanan trafik yoğunluğunun azaltılması açısından kritik olabilir. Bu çalışmada, üç farklı teknik kullanarak park doluluk oranları (ve dolayısıyla yer uygunluğu) tahmin edilmektedir: (i) otoregresif entegre hareketli ortalama modeli, (ii) mevsimsel otoregresif entegre hareketli ortalama modeli ve (iii) sinir ağları. Uygulama aşamasında, San Francisco'da gerçekleştirilen “SFpark” projesinin yol üstü park yerlerinin veri seti kullanılmıştır. Park yerlerinin yalnızca geçmiş doluluk oranları değil, bu doluluk oranlarını etkileyen gün tipi ve saat dilimi olmak üzere dışsal değişkenler de dikkate alınmıştır. Veri setindeki farklı park doluluk paternlerine sahip her bir park yeri için ele alınan yöntemlerin her birinin farklı model yapıları ile tahminler yapılmış ve ardından her bir park yeri için en iyi model tasarımını bulmak için sonuçlar karşılaştırılmıştır. Buna ek olarak, yöntemlerin birbirine olan üstünlüğü açısından da sonuçlar değerlendirilmiş ve ortalama karesel hatalar cinsinden sinir ağlarının performansının diğer yaklaşımlardan daha iyi olduğu gözlenmiştir.

Kaynakça

  • Arjona, J., Linares, M., Casanovas-Garcia, J., & Vazquez, J.J. (2020). Improving parking availability information using deep learning techniques. Transportation Research Procedia, 47, 385-392. Doi: https://doi.org/10.1016/j.trpro.2020.03.113
  • Awan, F.M., Saleem, Y., Minerva, R., & Crespi, N. (2020). A comparative analysis of machine/deep learning models for parking space availability prediction. Sensors, 20(1), 322. Doi: https://doi.org/10.3390/s20010322
  • Badii, C., Nesi, P., & Paoli, I. (2018). Predicting available parking slots on critical and regular services by exploiting a range of open data. IEEE Access, 6, 44059-44071. Doi: https://doi.org/10.1109/access.2018.2864157
  • Balmer, M., Weibel, R., & Huang, H. (2021). Value of incorporating geospatial information into the prediction of on-street parking occupancy–A case study. Geo-spatial Information Science, 24(3), 438-457. Doi: https://doi.org/10.1080/10095020.2021.1937337
  • Boussaada, Z., Curea, O., Remaci, A., Camblong, H., & Mrabet Bellaaj, N. (2018). A nonlinear autoregressive exogenous (NARX) neural network model for the prediction of the daily direct solar radiation. Energies, 11(3), 620. Doi: https://doi.org/10.3390/en11030620
  • Box, G.E.P., & Jenkins, G.M. (1976). Time series analysis: Forecasting and control. Holden-Day, San Francisco.
  • Caliskan, M., Barthels, A., Scheuermann, B., & Mauve, M. (2007). Predicting parking lot occupancy in vehicular ad hoc networks. 2007 IEEE 65th Vehicular Technology Conference-VTC2007-Spring, IEEE, Dublin, 277-281. Doi: https://doi.org/10.1109/vetecs.2007.69
  • Camero, A., Toutouh, J., Stolfi, D.H., & Alba, E. (2018). Evolutionary deep learning for car park occupancy prediction in smart cities. International Conference on Learning and Intelligent Optimization, Springer, Cham, Kalamata, 386-401. Doi: https://doi.org/10.1007/978-3-030-05348-2_32
  • Chang, A.S., & Kalawsky, R.S. (2017). European transport sector interventions for smart city. 7th International Conference on Power Electronics Systems and Applications-Smart Mobility, Power Transfer & Security (PESA), IEEE, Hong Kong, 1-6. Doi: https://doi.org/10.1109/pesa.2017.8277778
  • Cookson, G. (2017). Smart Parking – A Silver Bullet for Parking Pain. Retrieved from : http://inrix.com/blog/2017/07/parkingsurvey.
  • Enriquez, F., Soria, L.M., Alvarez-Garcia, J.A., Velasco, F., & Deniz, O. (2017). Existing approaches to smart parking: An overview. International Conference on Smart Cities, Springer, Cham, Malaga, 63-74. Doi: https://doi.org/10.1007/978-3-319-59513-9_7
  • Fabusuyi, T., Hampshire, R.C., Hill, V.A., & Sasanuma, K. (2014). Decision analytics for parking availability in downtown Pittsburgh. Interfaces, 44(3), 286-299. Doi: https://doi.org/10.1287/inte.2014.0743
  • Ionita, A., Pomp, A., Cochez, M., Meisen, T., & Decker, S. (2018). Where to park? predicting free parking spots in unmonitored city areas. Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics, Novi Sad, 1-12.Doi: https://doi.org/10.1145/3227609.3227648
  • Jin, C., Wang, L., Shu, L., Feng, Y., & Xu, X. (2012). A fairness-aware smart parking scheme aided by parking lots. 2012 IEEE International Conference on Communications (ICC), IEEE, Ottawa, 2119-2123. Doi: https://doi.org/10.1109/icc.2012.6364635
  • Kuhail, M.A., Boorlu, M., Padarthi, N., & Rottinghaus, C. (2019). Parking availability forecasting model. 2019 IEEE International Smart Cities Conference (ISC2), IEEE, Casablanca, 619-625. Doi: https://doi.org/10.1109/isc246665.2019.9071688
  • Kumpati, S.N., & Kannan, P. (1990). Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks, 1(1), 4-27. Doi: https://doi.org/10.1109/72.80202
  • Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly of applied mathematics, 2(2), 164-168. Doi: https://doi.org/10.1090/qam/10666
  • Li, J., Li, J., & Zhang, H. (2018). Deep learning based parking prediction on cloud platform. 2018 4th International Conference on Big Data Computing and Communications (BIGCOM), IEEE, Chicago, 132-137. Doi: https://doi.org/10.1109/bigcom.2018.00028
  • Lin, T., Horne, B.G., Tino, P., & Giles, C.L. (1996). Learning long-term dependencies in NARX recurrent neural networks. IEEE Transactions on Neural Networks, 7(6), 1329-1338.Doi: https://doi.org/10.1109/72.548162
  • Lin, T., Rivano, H., & Le Mouel, F. (2017). A survey of smart parking solutions. IEEE Transactions on Intelligent Transportation Systems, 18(12), 3229-3253. Doi: https://doi.org/10.1109/tits.2017.2685143
  • Lu, E.H.C., & Liao, C.H. (2020). Prediction-based parking allocation framework in urban environments. International Journal of Geographical Information Science, 34(9), 1873-1901. Doi: https://doi.org/10.1080/13658816.2020.1721503
  • Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics, 11(2), 431-441. Doi: https://doi.org/10.1137/0111030
  • Pflugler, C., Kohn, T., Schreieck, M., Wiesche, M., & Krcmar, H. (2016). Predicting the availability of parking spaces with publicly available data. Informatik, 2016, 361-374.
  • Provoost, J.C., Kamilaris, A., Wismans, L.J., Van Der Drift, S.J., & Van Keulen, M. (2020). Predicting parking occupancy via machine learning in the web of things. Internet of Things, 12, 100301. Doi: https://doi.org/10.1016/j.iot.2020.100301
  • Rajabioun, T., & Ioannou, P.A. (2015). On-street and off-street parking availability prediction using multivariate spatiotemporal models. IEEE Transactions on Intelligent Transportation Systems, 16(5), 2913-2924. Doi: https://doi.org/10.1109/tits.2015.2428705
  • Richter, F., Di Martino, S., & Mattfeld, D.C. (2014). Temporal and spatial clustering for a parking prediction service. 2014 IEEE 26th International Conference on Tools with Artificial Intelligence, IEEE, Limassol, 278-282. Doi: https://doi.org/10.1109/ictai.2014.49
  • Schrank, D.L., & Lomax, T.J. (2007). The 2007 urban mobility report. Texas Transportation Institute The Texas A&M University System.
  • Shoup, D C. (2006). Cruising for parking. Transport Policy, 13(6), 479-486. Doi: https://doi.org/10.1016/j.tranpol.2006.05.005
  • Siegelmann, H.T., Horne, B.G., & Giles, C.L. (1997). Computational capabilities of recurrent NARX neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 27(2), 208-215. Doi: https://doi.org/10.1109/3477.558801
  • Stolfi, D.H., Alba, E., & Yao, X. (2017). Predicting car park occupancy rates in smart cities. International Conference on Smart Cities, Springer, Cham, Malaga, 107-117 Doi: https://doi.org/10.1007/978-3-319-59513-9_11.
  • Stolfi, D.H., Alba, E., & Yao, X. (2020). Can I Park in the City Center? Predicting Car Park Occupancy Rates in Smart Cities. Journal of Urban Technology, 27(4), 27-41. Doi: https://doi.org/10.1080/10630732.2019.1586223
  • Tamrazian, A., Qian, Z., & Rajagopal, R. (2015). Where is my parking spot? Online and offline prediction of time-varying parking occupancy. Transportation Research Record, 2489(1), 77-85. Doi: https://doi.org/10.3141/2489-09
  • Tavafoghi, H., Poolla, K., & Varaiya, P. (2019). A Queuing Approach to Parking: Modeling, Verification, and Prediction. arXiv preprint arXiv:1908.11479, 1-28.
  • Teng, H., Falcocchio, J.C., Lapp, F., Price, G.A., Prassas, S., & Kolsal, A. (2001). Parking information and technology for a parking information system. Transportation Research Board 80th Annual Meeting, Washington, 34.
  • Tiedemann, T., Vögele, T., Krell, M.M., Metzen, J.H., & Kirchner, F. (2015). Concept of a data thread based parking space occupancy prediction in a berlin pilot region. Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin Texas.
  • Tilahun, S. L., & Di Marzo Serugendo, G. (2017). Cooperative multiagent system for parking availability prediction based on time varying dynamic Markov chains. Journal of Advanced Transportation, 2017, 1-14. Doi: https://doi.org/10.1155/2017/1760842
  • Vlahogianni, E.I., Kepaptsoglou, K., Tsetsos, V., & Karlaftis, M.G. (2016). A real-time parking prediction system for smart cities. Journal of Intelligent Transportation Systems, 20(2), 192-204. Doi: https://doi.org/10.1080/15472450.2015.1037955
  • White, P. (2007). No Vacancy: Park Slopes Parking Problem And How to Fix It. Retrieved from: http://www.transalt.org/newsroom/releases/126, access date: 09.03.2020.
  • Xiao, J., Lou, Y., & Frisby, J. (2018). How likely am I to find parking?–A practical model-based framework for predicting parking availability. Transportation Research Part B: Methodological, 112, 19-39. Doi: https://doi.org/10.1016/j.trb.2018.04.001
  • Xie, H., Tang, H., & Liao, Y.H. (2009). Time series prediction based on NARX neural networks: An advanced approach. 2009 International Conference on Machine Learning and Cybernetics, IEEE, Vol. 3, Hebei, 1275-1279. Doi: https://doi.org/10.1109/icmlc.2009.5212326
  • Yang, S., Ma, W., Pi, X., & Qian S. (2019). A deep learning approach to real-time parking occupancy prediction in transportation networks incorporating multiple spatio-temporal data sources. Transportation Research Part C: Emerging Technologies, 107, 248-265. Doi: https://doi.org/10.1016/j.trc.2019.08.010
  • Zhao, Z., Zhang, Y., & Zhang, Y. (2020). A comparative study of parking occupancy prediction methods considering parking type and parking scale. Journal of Advanced Transportation, 2020, 1-12. Doi: https://doi.org/10.1155/2020/5624586
  • Zheng, Y., Rajasegarar, S., & Leckie, C. (2015). Parking availability prediction for sensor-enabled car parks in smart cities. 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), IEEE, Singapore, 1-6. Doi: https://doi.org/10.1109/issnip.2015.7106902
  • Ziat, A., Leroy, B., Baskiotis, N., & Denoyer, L. (2016). Joint prediction of road-traffic and parking occupancy over a city with representation learning. 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), IEEE, Rio de Janeiro, 725-730. Doi: https://doi.org/10.1109/itsc.2016.7795634

PREDICTION OF PARKING SPACE AVAILABILITY USING ARIMA AND NEURAL NETWORKS

Yıl 2023, Cilt: 34 Sayı: 1, 86 - 108, 27.04.2023
https://doi.org/10.46465/endustrimuhendisligi.1241453

Öz

It may be critical for drivers to have information about the occupancy rates of the parking spaces around their destination in order to reduce the traffic density, a non-negligible part of which caused by the trips to find an available parking space. In this study, we predict parking occupancy rates (and thus, space availability) using three different techniques: (i) auto-regressive integrated moving average model, (ii) seasonal auto-regressive integrated moving average model and (iii) neural networks. In the implementation phase, we use the data set of the on-street parking spaces of the well-known “SFpark” project carried out in San Francisco. We take into account not only the past occupancy rates of parking spaces, but also exogenous variables that affect the corresponding occupancy rates as day type and time period of the day. We make predictions with different model structures of each of the considered methods for each parking space with different parking occupancy patterns in the data set and then compare the results to find the best model design for each parking space. We also, evaluate the results in terms of the superiority of the methods over each other and note that the performance of neural networks is better than those of the other approaches in terms of the mean squared errors.

Kaynakça

  • Arjona, J., Linares, M., Casanovas-Garcia, J., & Vazquez, J.J. (2020). Improving parking availability information using deep learning techniques. Transportation Research Procedia, 47, 385-392. Doi: https://doi.org/10.1016/j.trpro.2020.03.113
  • Awan, F.M., Saleem, Y., Minerva, R., & Crespi, N. (2020). A comparative analysis of machine/deep learning models for parking space availability prediction. Sensors, 20(1), 322. Doi: https://doi.org/10.3390/s20010322
  • Badii, C., Nesi, P., & Paoli, I. (2018). Predicting available parking slots on critical and regular services by exploiting a range of open data. IEEE Access, 6, 44059-44071. Doi: https://doi.org/10.1109/access.2018.2864157
  • Balmer, M., Weibel, R., & Huang, H. (2021). Value of incorporating geospatial information into the prediction of on-street parking occupancy–A case study. Geo-spatial Information Science, 24(3), 438-457. Doi: https://doi.org/10.1080/10095020.2021.1937337
  • Boussaada, Z., Curea, O., Remaci, A., Camblong, H., & Mrabet Bellaaj, N. (2018). A nonlinear autoregressive exogenous (NARX) neural network model for the prediction of the daily direct solar radiation. Energies, 11(3), 620. Doi: https://doi.org/10.3390/en11030620
  • Box, G.E.P., & Jenkins, G.M. (1976). Time series analysis: Forecasting and control. Holden-Day, San Francisco.
  • Caliskan, M., Barthels, A., Scheuermann, B., & Mauve, M. (2007). Predicting parking lot occupancy in vehicular ad hoc networks. 2007 IEEE 65th Vehicular Technology Conference-VTC2007-Spring, IEEE, Dublin, 277-281. Doi: https://doi.org/10.1109/vetecs.2007.69
  • Camero, A., Toutouh, J., Stolfi, D.H., & Alba, E. (2018). Evolutionary deep learning for car park occupancy prediction in smart cities. International Conference on Learning and Intelligent Optimization, Springer, Cham, Kalamata, 386-401. Doi: https://doi.org/10.1007/978-3-030-05348-2_32
  • Chang, A.S., & Kalawsky, R.S. (2017). European transport sector interventions for smart city. 7th International Conference on Power Electronics Systems and Applications-Smart Mobility, Power Transfer & Security (PESA), IEEE, Hong Kong, 1-6. Doi: https://doi.org/10.1109/pesa.2017.8277778
  • Cookson, G. (2017). Smart Parking – A Silver Bullet for Parking Pain. Retrieved from : http://inrix.com/blog/2017/07/parkingsurvey.
  • Enriquez, F., Soria, L.M., Alvarez-Garcia, J.A., Velasco, F., & Deniz, O. (2017). Existing approaches to smart parking: An overview. International Conference on Smart Cities, Springer, Cham, Malaga, 63-74. Doi: https://doi.org/10.1007/978-3-319-59513-9_7
  • Fabusuyi, T., Hampshire, R.C., Hill, V.A., & Sasanuma, K. (2014). Decision analytics for parking availability in downtown Pittsburgh. Interfaces, 44(3), 286-299. Doi: https://doi.org/10.1287/inte.2014.0743
  • Ionita, A., Pomp, A., Cochez, M., Meisen, T., & Decker, S. (2018). Where to park? predicting free parking spots in unmonitored city areas. Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics, Novi Sad, 1-12.Doi: https://doi.org/10.1145/3227609.3227648
  • Jin, C., Wang, L., Shu, L., Feng, Y., & Xu, X. (2012). A fairness-aware smart parking scheme aided by parking lots. 2012 IEEE International Conference on Communications (ICC), IEEE, Ottawa, 2119-2123. Doi: https://doi.org/10.1109/icc.2012.6364635
  • Kuhail, M.A., Boorlu, M., Padarthi, N., & Rottinghaus, C. (2019). Parking availability forecasting model. 2019 IEEE International Smart Cities Conference (ISC2), IEEE, Casablanca, 619-625. Doi: https://doi.org/10.1109/isc246665.2019.9071688
  • Kumpati, S.N., & Kannan, P. (1990). Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks, 1(1), 4-27. Doi: https://doi.org/10.1109/72.80202
  • Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly of applied mathematics, 2(2), 164-168. Doi: https://doi.org/10.1090/qam/10666
  • Li, J., Li, J., & Zhang, H. (2018). Deep learning based parking prediction on cloud platform. 2018 4th International Conference on Big Data Computing and Communications (BIGCOM), IEEE, Chicago, 132-137. Doi: https://doi.org/10.1109/bigcom.2018.00028
  • Lin, T., Horne, B.G., Tino, P., & Giles, C.L. (1996). Learning long-term dependencies in NARX recurrent neural networks. IEEE Transactions on Neural Networks, 7(6), 1329-1338.Doi: https://doi.org/10.1109/72.548162
  • Lin, T., Rivano, H., & Le Mouel, F. (2017). A survey of smart parking solutions. IEEE Transactions on Intelligent Transportation Systems, 18(12), 3229-3253. Doi: https://doi.org/10.1109/tits.2017.2685143
  • Lu, E.H.C., & Liao, C.H. (2020). Prediction-based parking allocation framework in urban environments. International Journal of Geographical Information Science, 34(9), 1873-1901. Doi: https://doi.org/10.1080/13658816.2020.1721503
  • Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics, 11(2), 431-441. Doi: https://doi.org/10.1137/0111030
  • Pflugler, C., Kohn, T., Schreieck, M., Wiesche, M., & Krcmar, H. (2016). Predicting the availability of parking spaces with publicly available data. Informatik, 2016, 361-374.
  • Provoost, J.C., Kamilaris, A., Wismans, L.J., Van Der Drift, S.J., & Van Keulen, M. (2020). Predicting parking occupancy via machine learning in the web of things. Internet of Things, 12, 100301. Doi: https://doi.org/10.1016/j.iot.2020.100301
  • Rajabioun, T., & Ioannou, P.A. (2015). On-street and off-street parking availability prediction using multivariate spatiotemporal models. IEEE Transactions on Intelligent Transportation Systems, 16(5), 2913-2924. Doi: https://doi.org/10.1109/tits.2015.2428705
  • Richter, F., Di Martino, S., & Mattfeld, D.C. (2014). Temporal and spatial clustering for a parking prediction service. 2014 IEEE 26th International Conference on Tools with Artificial Intelligence, IEEE, Limassol, 278-282. Doi: https://doi.org/10.1109/ictai.2014.49
  • Schrank, D.L., & Lomax, T.J. (2007). The 2007 urban mobility report. Texas Transportation Institute The Texas A&M University System.
  • Shoup, D C. (2006). Cruising for parking. Transport Policy, 13(6), 479-486. Doi: https://doi.org/10.1016/j.tranpol.2006.05.005
  • Siegelmann, H.T., Horne, B.G., & Giles, C.L. (1997). Computational capabilities of recurrent NARX neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 27(2), 208-215. Doi: https://doi.org/10.1109/3477.558801
  • Stolfi, D.H., Alba, E., & Yao, X. (2017). Predicting car park occupancy rates in smart cities. International Conference on Smart Cities, Springer, Cham, Malaga, 107-117 Doi: https://doi.org/10.1007/978-3-319-59513-9_11.
  • Stolfi, D.H., Alba, E., & Yao, X. (2020). Can I Park in the City Center? Predicting Car Park Occupancy Rates in Smart Cities. Journal of Urban Technology, 27(4), 27-41. Doi: https://doi.org/10.1080/10630732.2019.1586223
  • Tamrazian, A., Qian, Z., & Rajagopal, R. (2015). Where is my parking spot? Online and offline prediction of time-varying parking occupancy. Transportation Research Record, 2489(1), 77-85. Doi: https://doi.org/10.3141/2489-09
  • Tavafoghi, H., Poolla, K., & Varaiya, P. (2019). A Queuing Approach to Parking: Modeling, Verification, and Prediction. arXiv preprint arXiv:1908.11479, 1-28.
  • Teng, H., Falcocchio, J.C., Lapp, F., Price, G.A., Prassas, S., & Kolsal, A. (2001). Parking information and technology for a parking information system. Transportation Research Board 80th Annual Meeting, Washington, 34.
  • Tiedemann, T., Vögele, T., Krell, M.M., Metzen, J.H., & Kirchner, F. (2015). Concept of a data thread based parking space occupancy prediction in a berlin pilot region. Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin Texas.
  • Tilahun, S. L., & Di Marzo Serugendo, G. (2017). Cooperative multiagent system for parking availability prediction based on time varying dynamic Markov chains. Journal of Advanced Transportation, 2017, 1-14. Doi: https://doi.org/10.1155/2017/1760842
  • Vlahogianni, E.I., Kepaptsoglou, K., Tsetsos, V., & Karlaftis, M.G. (2016). A real-time parking prediction system for smart cities. Journal of Intelligent Transportation Systems, 20(2), 192-204. Doi: https://doi.org/10.1080/15472450.2015.1037955
  • White, P. (2007). No Vacancy: Park Slopes Parking Problem And How to Fix It. Retrieved from: http://www.transalt.org/newsroom/releases/126, access date: 09.03.2020.
  • Xiao, J., Lou, Y., & Frisby, J. (2018). How likely am I to find parking?–A practical model-based framework for predicting parking availability. Transportation Research Part B: Methodological, 112, 19-39. Doi: https://doi.org/10.1016/j.trb.2018.04.001
  • Xie, H., Tang, H., & Liao, Y.H. (2009). Time series prediction based on NARX neural networks: An advanced approach. 2009 International Conference on Machine Learning and Cybernetics, IEEE, Vol. 3, Hebei, 1275-1279. Doi: https://doi.org/10.1109/icmlc.2009.5212326
  • Yang, S., Ma, W., Pi, X., & Qian S. (2019). A deep learning approach to real-time parking occupancy prediction in transportation networks incorporating multiple spatio-temporal data sources. Transportation Research Part C: Emerging Technologies, 107, 248-265. Doi: https://doi.org/10.1016/j.trc.2019.08.010
  • Zhao, Z., Zhang, Y., & Zhang, Y. (2020). A comparative study of parking occupancy prediction methods considering parking type and parking scale. Journal of Advanced Transportation, 2020, 1-12. Doi: https://doi.org/10.1155/2020/5624586
  • Zheng, Y., Rajasegarar, S., & Leckie, C. (2015). Parking availability prediction for sensor-enabled car parks in smart cities. 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), IEEE, Singapore, 1-6. Doi: https://doi.org/10.1109/issnip.2015.7106902
  • Ziat, A., Leroy, B., Baskiotis, N., & Denoyer, L. (2016). Joint prediction of road-traffic and parking occupancy over a city with representation learning. 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), IEEE, Rio de Janeiro, 725-730. Doi: https://doi.org/10.1109/itsc.2016.7795634
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Endüstri Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Aslı Sebatlı Sağlam 0000-0002-9445-6740

Fatih Çavdur 0000-0001-8054-5606

Yayımlanma Tarihi 27 Nisan 2023
Kabul Tarihi 8 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 34 Sayı: 1

Kaynak Göster

APA Sebatlı Sağlam, A., & Çavdur, F. (2023). PREDICTION OF PARKING SPACE AVAILABILITY USING ARIMA AND NEURAL NETWORKS. Endüstri Mühendisliği, 34(1), 86-108. https://doi.org/10.46465/endustrimuhendisligi.1241453

19736      14617      26287       15235           15236           15240      15242