Research Article
BibTex RIS Cite

Evaluation of a collagen-bioaggregate composite scaffold in the repair of sheep pulp tissue

Year 2021, Volume: 55 Issue: 3, 152 - 161, 21.09.2021
https://doi.org/10.26650/eor.2021911441

Abstract

Purpose This study aimed to compare the effects of the collagen-BioAggregate mixture (CBA-M) and collagen-BioAggregate composite (CBA-C) sponge as a scaffolding material on the reparative dentin formation. Materials and Methods CBA-C sponge (10:1 w/w) was obtained and characterized by Scanning Electron Microscopy (SEM) and Mercury Porosimetry. Cytotoxicity of the CBA-C sponge was tested by using the L929 mouse fibroblast cell line. Dental pulp stem cells (DPSCs) were isolated from the pulp tissue of sheep teeth and characterized by flow cytometry for the presence of mesenchymal stem cell marker, CD44. The osteogenic differentiation capability of isolated DPSCs was studied by Alizarin Red staining. The cells were then used to study for the compatibility of CBA-C sponge with cell proliferation and calcium phosphate deposition. The effect of CBA-C sponge and CBA-M on the induction of dentin regeneration was studied in the perforated teeth of sheep for the eight-week period. All the analyses were performed with appropriate statistical hypothesis tests. Results CBA-C sponge was found to be biocompatible for DPSCs. The DPSCs seeded on the CBA-C sponge were able to differentiate into the osteoblastic lineage and deposit calcium phosphate crystals in vitro. Reparative dentin formation was observed after the second week in the CBA-C sponge applied group. At the end of eight weeks, a complete reparative dentin structure was formed in the CBA-C sponge applied group, whereas necrotic tissue residues were observed in groups treated with the CBA-M. Conclusion CBA-C sponge represents a better microenvironment for reparative dentin formation probably due to maintaining DPSCs and allowing their osteogenic differentiation and thus calcium phosphate deposition. 

Supporting Institution

Scientific and Technological Research Council of Turkey (TÜBİTAK), Research Fund of the Inonu University

Project Number

112S584, 2013/80.

References

  • 1. Fuks AB. Vital pulp therapy with new materials for primary teeth: new directions and treatment perspectives. Pediatr Dent 2008;30:211-9. [CrossRef ]
  • 2. Dammaschke T. The history of direct pulp capping. J Hist Dent 2008;56:9-23.
  • 3. Briso ALF, Rahal V, Mestrener SR, Dezan Junior E. Biological response of pulps submitted to different capping materials. Braz Oral Res 2006;20:219-25. [CrossRef ]
  • 4. Torabinejad M, White DJ, inventors. Tooth filling material and method of use. patent United States Patent & Trademark Office 5,415,547. 1995.
  • 5. Komobayashi T, Zhu Q, Eberhart R, Imai Y. Current status of direct pulp-capping materials for permanent teeth. Dental Mat J 2016;35:1-12. [CrossRef ]
  • 6. Suh B, Cannon M, Yin R, Martin D (2008) Polymerizable dental pulp healing, capping, and lining material and method for use. International Patent A61K33/42;A61K33/42 Application number WO2008US5438720080220; Publication number WO2008103712 (A2); Publication date 2008-08-28
  • 7. Park J-W, Hong S-H, Kim J-H, Lee S-J, Shin S-J. X-Ray diffraction analysis of white ProRoot MTA and Diadent BioAggregate. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:155-8. [CrossRef ]
  • 8. Scheller E, Krebsbach P, Kohn D. Tissue engineering: state of the art in oral rehabilitation. J Oral Rehabil 2009;36:368-89. [CrossRef ]
  • 9. Rosa V, Della Bona A, Cavalcanti BN, Nör JE. Tissue engineering: from research to dental clinics. Dent Mater 2012;28:341-8. [CrossRef ]
  • 10. Demarco FF, Conde MCM, Cavalcanti BN, Casagrande L, Sakai VT, Nör JE. Dental pulp tissue engineering. Braz Dent J 2011;22:3- 13. [CrossRef ]
  • 11. Freyman T, Yannas I, Gibson L. Cellular materials as porous scaffolds for tissue engineering. Prog Mater Sci 2001;46:273-82. [CrossRef ]
  • 12. Sloan Alastair J, Waddington Rachel J. Dental pulp stem cells: what, where, how?. Int J Paediatr Dent 2009;19:61-70. [CrossRef ]
  • 13. Lan X, Sun Z, Chu C, Boltze J, Li S. Dental pulp stem cells: an attractive alternative for cell therapy in ischemic stroke. Front Neurol 2019;10:824. [CrossRef ]
  • 14. Van De Loosdrecht AA, Alhan C, Béné MC, et al. Standardization of flow cytometry in myelodysplastic syndromes: report from the first European LeukemiaNet working conference on flow cytometry in myelodysplastic syndromes. Haematologica 2009;94:1124-34. [CrossRef ]
  • 15. Yang M-C, Chi N-H, Chou N-K, et al. The influence of rat mesenchymal stem cell CD44 surface markers on cell growth, fibronectin expression, and cardiomyogenic differentiation on silk fibroin–hyaluronic acid cardiac patches. Biomaterials 2010;31:854-62. [CrossRef ]
  • 16. Shiau M-Y, Chiou H-L, Lee Y-L, Kuo T-M, Chang Y-H. Establishment of a consistent L929 bioassay system for TNF-alpha quantitation to evaluate the effect of lipopolysaccharide, phytomitogens and cytodifferentiation agents on cytotoxicity of TNF-alpha secreted by adherent human mononuclear cells. Mediators Inflamm 2001;10:199. [CrossRef ]
  • 17. Miranda RB, Fidel SR, Boller MAA. L929 cell response to root perforation repair cements: an in vitro cytotoxicity assay. Braz Dent J 2009;20:22-6. [CrossRef ]
  • 18. Al-Nasiry S, Geusens N, Hanssens M, Luyten C, Pijnenborg R. The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum Reprod 2007;22:1304-9. [CrossRef ]
  • 19. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci 2000;97:13625-30. [CrossRef ]
  • 20. Wang J, Liu B, Gu S, Liang J. Effects of Wnt/β‐catenin signalling on proliferation and differentiation of apical papilla stem cells. Cell Prolif 2012;45:121-31. [CrossRef ]
  • 21. Dissanayaka WL, Zhang C. Scaffold-based and scaffold-free strategies in dental pulp regeneration. J Endod 2020;46:81–9. [CrossRef ]
  • 22. Okamoto M, Matsumoto S, Sugiyama A, et al. Performance of a biodegradable composite with hydroxyapatite as a scaffold in pulp tissue repair. Polymers 2020;12:937. [CrossRef ]
  • 23. Komori T. Regulation of osteoblast and odontoblast differentiation by Runx2. J Oral Biosci 2010;52:22-5. [CrossRef ]
  • 24. Liu M, Sun Y, Liu Y, Yuan M, Zhang Z, Hu W. Modulation of the differentiation of dental pulp stem cells by different concentrations of β-glycerophosphate. Molecules 2012;17:1219- 32. [CrossRef ]
  • 25. Moore MJ, Jabbari E, Ritman EL, et al. Quantitative analysis of interconnectivity of porous biodegradable scaffolds with micro‐ computed tomography. J Biomed Mater Res A 2004;71:258-67. [CrossRef ]
  • 26. Cooper G, Hausman R. The cell: a molecular approach. Sinauer Associates, Sunderland, MA;2000.
  • 27. Zhang S, Yang X, Fan M. BioAggregate and iRoot BP Plus optimize the proliferation and mineralization ability of human dental pulp cells. Int Endod J 2013;46:923-9. [CrossRef ]
  • 28. Jung JY, Woo SM, Lee BN, Koh JT, Nör J, Hwang YC. Effect of Biodentine and Bioaggregate on odontoblastic differentiation via mitogen‐activated protein kinase pathway in human dental pulp cells. Int Endod J 2015;48:177-84. [CrossRef ]
  • 29. Yan P, Yuan Z, Jiang H, Peng B, Bian Z. Effect of bioaggregate on differentiation of human periodontal ligament fibroblasts. Int Endod J 2010;43:1116-21. [CrossRef]
  • 30. Yuan Z, Peng B, Jiang H, Bian Z, Yan P. Effect of bioaggregate on mineral-associated gene expression in osteoblast cells. J Endod 2010;36:1145-8. [CrossRef ]
  • 31. Saghiri MA, Asatourian A, Garcia-Godoy F, Gutmann JL, Sheibani N. The impact of thermocycling process on the dislodgement force of different endodontic cements BioMed Res Int 2013;2013.
  • 32. Chang S-W, Lee S-Y, Kum K-Y, Kim E-C. Effects of ProRoot MTA, Bioaggregate, and Micromega MTA on odontoblastic differentiation in human dental pulp cells. J Endod 2014;40:113- 8. [CrossRef ]
  • 33. Cormier C. Markers of bone metabolism. Curr Opin Rheumatol 1995; 7: 243-8. [CrossRef ]
  • 34. Kim J, Song YS, Min KS, et al. Evaluation of reparative dentin formation of ProRoot MTA, Biodentine and BioAggregate using micro-CT and immunohistochemistry. Restor Dent Endod 2016;41:29-36. [CrossRef ]
  • 35. Khalil W, Eid N. Biocompatibility of BioAggregate and mineral trioxide aggregate on the liver and kidney. Int Endod J 2013;46:730-7. [CrossRef ]
  • 36. de Morais CAH, Bernardineli N, Garcia RB, Duarte MA, Guerisoli DM. Evaluation of tissue response to MTA and Portland cement with iodoform. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;102:417-21. [CrossRef ]
  • 37. Parirokh M, Mirsoltani B, Raoof M, Tabrizchi H, Haghdoost A. Comparative study of subcutaneous tissue responses to a novel root‐end filling material and white and grey mineral trioxide aggregate. Int Endod J 2011;44:283-9. [CrossRef ]
  • 38. Ravindran S, Huang C-C, George A. Extracellular matrix of dental pulp stem cells: applications in pulp tissue engineering using somatic MSCs. Front Physiol 2014;4:395. [CrossRef ]
  • 39. Wu C-C, Huang S-T, Lin H-C, Tseng T-W, Rao Q-L, Chen M-Y. Expression of osteopontin and type I collagen of hFOB 1.19 cells on sintered fluoridated hydroxyapatite composite bone graft materials. Implant Dent 2010;19:487-97. [CrossRef ]
  • 40. Jang JH, Moon JH, Kim SG, Kim SY. Pulp regeneration with hemostatic matrices as a scaffold in an immature tooth minipig model. Sci Rep 2020;10:12536. [CrossRef ]
  • 41. Kakarla P, Avula JSS, Mellela GM, Bandi S, Anche S. Dental pulp response to collagen and pulpotec cement as pulpotomy agents in primary dentition: A histological study. J Conserv Dent 2013;16:434. [CrossRef ]
  • 42. Chakka LRJ, Vislisel J, Vidal CMP, Biz MT, Salem AK, Cavalcanti BN. Application of BMP-2/FGF-2 gene–activated scaffolds for dental pulp capping. Clin Oral Investig 2020;24:4427-4437. [CrossRef ]
  • 43. Doğan A, Munkley A, Thomas S, Moran J. Microscopic evaluation of biocompatibility of osteoblast impregnated human collagen sponges. J Dent Res 1992;71:637.
  • 44. Dick H, Carmichael D. Reconstituted antigen-poor collagen preparations as potential pulp-capping agents. J Endod 1980;6:641-4. [CrossRef ]
  • 45. d’Aquino R, De Rosa A, Lanza V, et al. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater 2009;18:75- 83. [CrossRef ]
Year 2021, Volume: 55 Issue: 3, 152 - 161, 21.09.2021
https://doi.org/10.26650/eor.2021911441

Abstract

Project Number

112S584, 2013/80.

References

  • 1. Fuks AB. Vital pulp therapy with new materials for primary teeth: new directions and treatment perspectives. Pediatr Dent 2008;30:211-9. [CrossRef ]
  • 2. Dammaschke T. The history of direct pulp capping. J Hist Dent 2008;56:9-23.
  • 3. Briso ALF, Rahal V, Mestrener SR, Dezan Junior E. Biological response of pulps submitted to different capping materials. Braz Oral Res 2006;20:219-25. [CrossRef ]
  • 4. Torabinejad M, White DJ, inventors. Tooth filling material and method of use. patent United States Patent & Trademark Office 5,415,547. 1995.
  • 5. Komobayashi T, Zhu Q, Eberhart R, Imai Y. Current status of direct pulp-capping materials for permanent teeth. Dental Mat J 2016;35:1-12. [CrossRef ]
  • 6. Suh B, Cannon M, Yin R, Martin D (2008) Polymerizable dental pulp healing, capping, and lining material and method for use. International Patent A61K33/42;A61K33/42 Application number WO2008US5438720080220; Publication number WO2008103712 (A2); Publication date 2008-08-28
  • 7. Park J-W, Hong S-H, Kim J-H, Lee S-J, Shin S-J. X-Ray diffraction analysis of white ProRoot MTA and Diadent BioAggregate. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:155-8. [CrossRef ]
  • 8. Scheller E, Krebsbach P, Kohn D. Tissue engineering: state of the art in oral rehabilitation. J Oral Rehabil 2009;36:368-89. [CrossRef ]
  • 9. Rosa V, Della Bona A, Cavalcanti BN, Nör JE. Tissue engineering: from research to dental clinics. Dent Mater 2012;28:341-8. [CrossRef ]
  • 10. Demarco FF, Conde MCM, Cavalcanti BN, Casagrande L, Sakai VT, Nör JE. Dental pulp tissue engineering. Braz Dent J 2011;22:3- 13. [CrossRef ]
  • 11. Freyman T, Yannas I, Gibson L. Cellular materials as porous scaffolds for tissue engineering. Prog Mater Sci 2001;46:273-82. [CrossRef ]
  • 12. Sloan Alastair J, Waddington Rachel J. Dental pulp stem cells: what, where, how?. Int J Paediatr Dent 2009;19:61-70. [CrossRef ]
  • 13. Lan X, Sun Z, Chu C, Boltze J, Li S. Dental pulp stem cells: an attractive alternative for cell therapy in ischemic stroke. Front Neurol 2019;10:824. [CrossRef ]
  • 14. Van De Loosdrecht AA, Alhan C, Béné MC, et al. Standardization of flow cytometry in myelodysplastic syndromes: report from the first European LeukemiaNet working conference on flow cytometry in myelodysplastic syndromes. Haematologica 2009;94:1124-34. [CrossRef ]
  • 15. Yang M-C, Chi N-H, Chou N-K, et al. The influence of rat mesenchymal stem cell CD44 surface markers on cell growth, fibronectin expression, and cardiomyogenic differentiation on silk fibroin–hyaluronic acid cardiac patches. Biomaterials 2010;31:854-62. [CrossRef ]
  • 16. Shiau M-Y, Chiou H-L, Lee Y-L, Kuo T-M, Chang Y-H. Establishment of a consistent L929 bioassay system for TNF-alpha quantitation to evaluate the effect of lipopolysaccharide, phytomitogens and cytodifferentiation agents on cytotoxicity of TNF-alpha secreted by adherent human mononuclear cells. Mediators Inflamm 2001;10:199. [CrossRef ]
  • 17. Miranda RB, Fidel SR, Boller MAA. L929 cell response to root perforation repair cements: an in vitro cytotoxicity assay. Braz Dent J 2009;20:22-6. [CrossRef ]
  • 18. Al-Nasiry S, Geusens N, Hanssens M, Luyten C, Pijnenborg R. The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum Reprod 2007;22:1304-9. [CrossRef ]
  • 19. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci 2000;97:13625-30. [CrossRef ]
  • 20. Wang J, Liu B, Gu S, Liang J. Effects of Wnt/β‐catenin signalling on proliferation and differentiation of apical papilla stem cells. Cell Prolif 2012;45:121-31. [CrossRef ]
  • 21. Dissanayaka WL, Zhang C. Scaffold-based and scaffold-free strategies in dental pulp regeneration. J Endod 2020;46:81–9. [CrossRef ]
  • 22. Okamoto M, Matsumoto S, Sugiyama A, et al. Performance of a biodegradable composite with hydroxyapatite as a scaffold in pulp tissue repair. Polymers 2020;12:937. [CrossRef ]
  • 23. Komori T. Regulation of osteoblast and odontoblast differentiation by Runx2. J Oral Biosci 2010;52:22-5. [CrossRef ]
  • 24. Liu M, Sun Y, Liu Y, Yuan M, Zhang Z, Hu W. Modulation of the differentiation of dental pulp stem cells by different concentrations of β-glycerophosphate. Molecules 2012;17:1219- 32. [CrossRef ]
  • 25. Moore MJ, Jabbari E, Ritman EL, et al. Quantitative analysis of interconnectivity of porous biodegradable scaffolds with micro‐ computed tomography. J Biomed Mater Res A 2004;71:258-67. [CrossRef ]
  • 26. Cooper G, Hausman R. The cell: a molecular approach. Sinauer Associates, Sunderland, MA;2000.
  • 27. Zhang S, Yang X, Fan M. BioAggregate and iRoot BP Plus optimize the proliferation and mineralization ability of human dental pulp cells. Int Endod J 2013;46:923-9. [CrossRef ]
  • 28. Jung JY, Woo SM, Lee BN, Koh JT, Nör J, Hwang YC. Effect of Biodentine and Bioaggregate on odontoblastic differentiation via mitogen‐activated protein kinase pathway in human dental pulp cells. Int Endod J 2015;48:177-84. [CrossRef ]
  • 29. Yan P, Yuan Z, Jiang H, Peng B, Bian Z. Effect of bioaggregate on differentiation of human periodontal ligament fibroblasts. Int Endod J 2010;43:1116-21. [CrossRef]
  • 30. Yuan Z, Peng B, Jiang H, Bian Z, Yan P. Effect of bioaggregate on mineral-associated gene expression in osteoblast cells. J Endod 2010;36:1145-8. [CrossRef ]
  • 31. Saghiri MA, Asatourian A, Garcia-Godoy F, Gutmann JL, Sheibani N. The impact of thermocycling process on the dislodgement force of different endodontic cements BioMed Res Int 2013;2013.
  • 32. Chang S-W, Lee S-Y, Kum K-Y, Kim E-C. Effects of ProRoot MTA, Bioaggregate, and Micromega MTA on odontoblastic differentiation in human dental pulp cells. J Endod 2014;40:113- 8. [CrossRef ]
  • 33. Cormier C. Markers of bone metabolism. Curr Opin Rheumatol 1995; 7: 243-8. [CrossRef ]
  • 34. Kim J, Song YS, Min KS, et al. Evaluation of reparative dentin formation of ProRoot MTA, Biodentine and BioAggregate using micro-CT and immunohistochemistry. Restor Dent Endod 2016;41:29-36. [CrossRef ]
  • 35. Khalil W, Eid N. Biocompatibility of BioAggregate and mineral trioxide aggregate on the liver and kidney. Int Endod J 2013;46:730-7. [CrossRef ]
  • 36. de Morais CAH, Bernardineli N, Garcia RB, Duarte MA, Guerisoli DM. Evaluation of tissue response to MTA and Portland cement with iodoform. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;102:417-21. [CrossRef ]
  • 37. Parirokh M, Mirsoltani B, Raoof M, Tabrizchi H, Haghdoost A. Comparative study of subcutaneous tissue responses to a novel root‐end filling material and white and grey mineral trioxide aggregate. Int Endod J 2011;44:283-9. [CrossRef ]
  • 38. Ravindran S, Huang C-C, George A. Extracellular matrix of dental pulp stem cells: applications in pulp tissue engineering using somatic MSCs. Front Physiol 2014;4:395. [CrossRef ]
  • 39. Wu C-C, Huang S-T, Lin H-C, Tseng T-W, Rao Q-L, Chen M-Y. Expression of osteopontin and type I collagen of hFOB 1.19 cells on sintered fluoridated hydroxyapatite composite bone graft materials. Implant Dent 2010;19:487-97. [CrossRef ]
  • 40. Jang JH, Moon JH, Kim SG, Kim SY. Pulp regeneration with hemostatic matrices as a scaffold in an immature tooth minipig model. Sci Rep 2020;10:12536. [CrossRef ]
  • 41. Kakarla P, Avula JSS, Mellela GM, Bandi S, Anche S. Dental pulp response to collagen and pulpotec cement as pulpotomy agents in primary dentition: A histological study. J Conserv Dent 2013;16:434. [CrossRef ]
  • 42. Chakka LRJ, Vislisel J, Vidal CMP, Biz MT, Salem AK, Cavalcanti BN. Application of BMP-2/FGF-2 gene–activated scaffolds for dental pulp capping. Clin Oral Investig 2020;24:4427-4437. [CrossRef ]
  • 43. Doğan A, Munkley A, Thomas S, Moran J. Microscopic evaluation of biocompatibility of osteoblast impregnated human collagen sponges. J Dent Res 1992;71:637.
  • 44. Dick H, Carmichael D. Reconstituted antigen-poor collagen preparations as potential pulp-capping agents. J Endod 1980;6:641-4. [CrossRef ]
  • 45. d’Aquino R, De Rosa A, Lanza V, et al. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater 2009;18:75- 83. [CrossRef ]
There are 45 citations in total.

Details

Primary Language English
Subjects Dentistry
Journal Section Original Research Articles
Authors

Burak Dayı 0000-0002-5289-438X

Deniz Sezlev Bilecen 0000-0002-5708-2276

Hatice Eröksüz 0000-0002-8407-5792

Muhammet Yalçın 0000-0003-2077-521X

Vasif Hasırcı 0000-0002-3698-8861

Project Number 112S584, 2013/80.
Publication Date September 21, 2021
Submission Date April 10, 2021
Published in Issue Year 2021 Volume: 55 Issue: 3

Cite

EndNote Dayı B, Sezlev Bilecen D, Eröksüz H, Yalçın M, Hasırcı V (September 1, 2021) Evaluation of a collagen-bioaggregate composite scaffold in the repair of sheep pulp tissue. European Oral Research 55 3 152–161.