Araştırma Makalesi
BibTex RIS Kaynak Göster

Bina Üzerindeki Rüzgar Yüklerinin Farklı Türbülans Modelleriyle Sayısal Olarak İncelenmesi

Yıl 2021, Cilt: 37 Sayı: 2, 356 - 366, 28.08.2021

Öz

Bu çalışmada, karmaşık geometriye sahip bir bina üzerindeki rüzgar yükü sayısal olarak incelenmiştir. Bina çevresindeki akış yapılarını hız, basınç ve türbülanslı kinetik enerji dağılımları açısından değerlendirmek için tek denklemli Spalart-Allmaras, dört denklemli transition SST ve iki denklemli k-ω SST olmak üzere üç tip RANS modeli simülasyon için kullanılmıştır. Tüm simülasyon durumları için bina yüzeyleri etrafındaki basınç katsayısı (Cp) dağılımlarından binanın batıya bakan cephelerinde pozitif; kuzey, güney ve doğu cephelerinde ise negatif Cp değeri olduğu açıkça görülmüştür. Binanın kuzeydoğusundaki girdap oluşumu neticesinde x/L=0.7 konumundan sonra binanın doğusuna doğru ilerlerken Cp değerinde ani ve dik bir artış olmuştur. Ayrıca, binanın kuzey cephesinde emme etkisinin transition SST türbülans modelinde diğerlerine göre daha duyarlı olduğu görülmüştür. Ek olarak, Spalart-Allmaras için yerel en yüksek Cp değeri (batıya bakan kısımda) 1.364 ve transition SST için maksimum yerel emme (kuzeye bakan kısımda)-0.892'ye eşittir. Binanın doğuya bakan kısmındaki akış resirkülasyon bölgesi, transition SST ve k-ω SST modellerine kıyasla Spalart-Allmaras için en geniş haldedir. Spiral düğümlerin ve semer noktalarının konumlarına bakıldığında, Spalart-Allmaras modeli diğer modellerle (transition SST ve k-w SST) karşılaştırıldığında, oluşan girdabın boyutu açısından ayırt edici bir fark vardır.

Kaynakça

  • Referans1-Versteeg, H. K., & Malalasekera, W. 2007. An introduction to computational fluid dynamics: the finite volume method. Pearson education.
  • Referans2-Holmes, J. D. 2018. Wind loading of structures. CRC press. New York: Taylor & Francis Group
  • Referans3-Zhao, M. 2021. Prediction and Validation Technologies of Aerodynamic Force and Heat for Hypersonic Vehicle Design. Springer Nature.
  • Referans4-Mou, B., He, B. J., Zhao, D. X., & Chau, K. W. 2017. Numerical simulation of the effects of building dimensional variation on wind pressure distribution. Engineering Applications of Computational Fluid Mechanics, 11(1), 293-309.
  • Referans5-Oliveira, P. J., & Younis, B. A. 2000. On the prediction of turbulent flows around full-scale buildings. Journal of Wind Engineering and Industrial Aerodynamics, 86(2-3), 203-220.
  • Referans6-Ozmen, Y., Baydar, E., & Van Beeck, J. P. A. J. 2016. Wind flow over the low-rise building models with gabled roofs having different pitch angles. Building and Environment, 95, 63-74.
  • Referans7-Lien, F. S., Yee, E., & Cheng, Y. 2004. Simulation of mean flow and turbulence over a 2D building array using high-resolution CFD and a distributed drag force approach. Journal of Wind Engineering and Industrial Aerodynamics, 92(2), 117-158.
  • Referans8-Kim, Y. C., Bandi, E. K., Yoshida, A., & Tamura, Y. 2015. Response characteristics of super-tall buildings–Effects of number of sides and helical angle. Journal of Wind Engineering and Industrial Aerodynamics, 145, 252-262.
  • Referans9-Dagnew, A. K., & Bitsuamlak, G. T. 2010. LES evaluation of wind pressures on a standard tall building with and without a neighboring building. The Fifth International Symposium on Computational Wind Engineering (CWE2010) Chapel Hill, North Carolina, USA May 23-27.
  • Referans10-Sharma, A., Mittal, H., & Gairola, A. 2018. Mitigation of wind load on tall buildings through aerodynamic modifications. Journal of Building Engineering, 18, 180-194.
  • Referans11-Xie, J. 2014. Aerodynamic optimization of super-tall buildings and its effectiveness assessment. Journal of Wind Engineering and Industrial Aerodynamics, 130, 88-98.
  • Referans12-Daemei, A. B., Khotbehsara, E. M., Nobarani, E. M., & Bahrami, P. 2019. Study on wind aerodynamic and flow characteristics of triangular-shaped tall buildings and CFD simulation in order to assess drag coefficient. Ain Shams Engineering Journal, 10(3), 541-548.
  • Referans13-Tanaka, H., Tamura, Y., Ohtake, K., Nakai, M., & Kim, Y. C. 2012. Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations. Journal of Wind Engineering and Industrial Aerodynamics, 107, 179-191.
  • Referans14-Bhattacharyya, B., & Dalui, S. K. 2020. Experimental and numerical study of wind-pressure distribution on irregular-plan-shaped building. Journal of Structural Engineering, 146(7), 04020137.
  • Referans15-Liu, Z., Zheng, C., Wu, Y., Flay, R. G., & Zhang, K. 2019. Investigation on the effects of twisted wind flow on the wind loads on a square section megatall building. Journal of Wind Engineering and Industrial Aerodynamics, 191, 127-142.
  • Referans16-Tamura, T., & Miyagi, T. 1999. The effect of turbulence on aerodynamic forces on a square cylinder with various corner shapes. Journal of Wind Engineering and Industrial Aerodynamics, 83(1-3), 135-145.
  • Referans17-Tominaga, Y., Akabayashi, S. I., Kitahara, T., & Arinami, Y. 2015. Air flow around isolated gable-roof buildings with different roof pitches: Wind tunnel experiments and CFD simulations. Building and Environment, 84, 204-213.
  • Referans18-Bartzis, J. G., Vlachogianis, D., & Stefanos, A. 2004. Best Practice Advice for Environmental Flows. TA5 QNET CFD network Newsletter, 2(4).
  • Referans19-Franke, J., Hellsten, A., Schlünzen, H., & Carissimo, B. 2007. Best practice guideline for the CFD simulation of flows in the urban environment. COST action 732. Quality Assurance and Improvement of Meteorological Models. University of Hamburg, Meteorological Institute, Center of Marine and Atmospheric Sciences.
  • Referans20-Mou, B., He, B. J., Zhao, D. X., & Chau, K. W. 2017. Numerical simulation of the effects of building dimensional variation on wind pressure distribution. Engineering Applications of Computational Fluid Mechanics, 11(1), 293-309.
  • Referans21-Hunte, S. 2010. Testing the application of CFD for building design. Delft University of Technology, Master Thesis, Netherland.
  • Referans22-Özmen, Y., & Kaydok, T. 2014. Kare kesitli bir yüksek bina üzerindeki türbülanslı akışın sayısal olarak incelenmesi. Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, 17(2), 15-25.

Numerical Investigation of Wind Loads on Building with Various Turbulence Models

Yıl 2021, Cilt: 37 Sayı: 2, 356 - 366, 28.08.2021

Öz

In this study, wind load on a building having irregular geometry was investigated numerically. In order to evaluate flow structures around the building in terms of the distributions of velocity, pressure and turbulent kinetic energy, three types of RANS models including Spalart-Allmaras one-equation, transition SST four-equation and k-ω SST two-equation models were utilized for simulation. It was evidently seen from the distributions of pressure coefficient (Cp) around surfaces of the building that positive Cp value was revealed on the west-facing of the building while north-, south-, and east-facing of the building had negative Cp for all simulation cases. By the virtue of the vortex formation in the northeast of the building, after the position of x/L=0.7 there was an abrupt and steep increment in Cp while on the way to the east of the building. Furthermore, it was seen from northern facing of building that suction effect was more sensitive for transition SST turbulence model compared with the others. Besides, the local highest Cp value (west-facing) was 1.364 for Spalart-Allmaras, and the maximum local suction (north-facing) was -0.892 for transition SST. Flow recirculation zone in the east-facing part of the building was the most extended for Spalart-Allmaras compared to transition SST and k-ω SST models. Looking at the positions of the spiral nodes and saddle points, there was a distinguishable difference when Spalart-Allmaras model was compared to the other models (transition SST and k-w SST) with regard to the size of the vortex formed.

Kaynakça

  • Referans1-Versteeg, H. K., & Malalasekera, W. 2007. An introduction to computational fluid dynamics: the finite volume method. Pearson education.
  • Referans2-Holmes, J. D. 2018. Wind loading of structures. CRC press. New York: Taylor & Francis Group
  • Referans3-Zhao, M. 2021. Prediction and Validation Technologies of Aerodynamic Force and Heat for Hypersonic Vehicle Design. Springer Nature.
  • Referans4-Mou, B., He, B. J., Zhao, D. X., & Chau, K. W. 2017. Numerical simulation of the effects of building dimensional variation on wind pressure distribution. Engineering Applications of Computational Fluid Mechanics, 11(1), 293-309.
  • Referans5-Oliveira, P. J., & Younis, B. A. 2000. On the prediction of turbulent flows around full-scale buildings. Journal of Wind Engineering and Industrial Aerodynamics, 86(2-3), 203-220.
  • Referans6-Ozmen, Y., Baydar, E., & Van Beeck, J. P. A. J. 2016. Wind flow over the low-rise building models with gabled roofs having different pitch angles. Building and Environment, 95, 63-74.
  • Referans7-Lien, F. S., Yee, E., & Cheng, Y. 2004. Simulation of mean flow and turbulence over a 2D building array using high-resolution CFD and a distributed drag force approach. Journal of Wind Engineering and Industrial Aerodynamics, 92(2), 117-158.
  • Referans8-Kim, Y. C., Bandi, E. K., Yoshida, A., & Tamura, Y. 2015. Response characteristics of super-tall buildings–Effects of number of sides and helical angle. Journal of Wind Engineering and Industrial Aerodynamics, 145, 252-262.
  • Referans9-Dagnew, A. K., & Bitsuamlak, G. T. 2010. LES evaluation of wind pressures on a standard tall building with and without a neighboring building. The Fifth International Symposium on Computational Wind Engineering (CWE2010) Chapel Hill, North Carolina, USA May 23-27.
  • Referans10-Sharma, A., Mittal, H., & Gairola, A. 2018. Mitigation of wind load on tall buildings through aerodynamic modifications. Journal of Building Engineering, 18, 180-194.
  • Referans11-Xie, J. 2014. Aerodynamic optimization of super-tall buildings and its effectiveness assessment. Journal of Wind Engineering and Industrial Aerodynamics, 130, 88-98.
  • Referans12-Daemei, A. B., Khotbehsara, E. M., Nobarani, E. M., & Bahrami, P. 2019. Study on wind aerodynamic and flow characteristics of triangular-shaped tall buildings and CFD simulation in order to assess drag coefficient. Ain Shams Engineering Journal, 10(3), 541-548.
  • Referans13-Tanaka, H., Tamura, Y., Ohtake, K., Nakai, M., & Kim, Y. C. 2012. Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations. Journal of Wind Engineering and Industrial Aerodynamics, 107, 179-191.
  • Referans14-Bhattacharyya, B., & Dalui, S. K. 2020. Experimental and numerical study of wind-pressure distribution on irregular-plan-shaped building. Journal of Structural Engineering, 146(7), 04020137.
  • Referans15-Liu, Z., Zheng, C., Wu, Y., Flay, R. G., & Zhang, K. 2019. Investigation on the effects of twisted wind flow on the wind loads on a square section megatall building. Journal of Wind Engineering and Industrial Aerodynamics, 191, 127-142.
  • Referans16-Tamura, T., & Miyagi, T. 1999. The effect of turbulence on aerodynamic forces on a square cylinder with various corner shapes. Journal of Wind Engineering and Industrial Aerodynamics, 83(1-3), 135-145.
  • Referans17-Tominaga, Y., Akabayashi, S. I., Kitahara, T., & Arinami, Y. 2015. Air flow around isolated gable-roof buildings with different roof pitches: Wind tunnel experiments and CFD simulations. Building and Environment, 84, 204-213.
  • Referans18-Bartzis, J. G., Vlachogianis, D., & Stefanos, A. 2004. Best Practice Advice for Environmental Flows. TA5 QNET CFD network Newsletter, 2(4).
  • Referans19-Franke, J., Hellsten, A., Schlünzen, H., & Carissimo, B. 2007. Best practice guideline for the CFD simulation of flows in the urban environment. COST action 732. Quality Assurance and Improvement of Meteorological Models. University of Hamburg, Meteorological Institute, Center of Marine and Atmospheric Sciences.
  • Referans20-Mou, B., He, B. J., Zhao, D. X., & Chau, K. W. 2017. Numerical simulation of the effects of building dimensional variation on wind pressure distribution. Engineering Applications of Computational Fluid Mechanics, 11(1), 293-309.
  • Referans21-Hunte, S. 2010. Testing the application of CFD for building design. Delft University of Technology, Master Thesis, Netherland.
  • Referans22-Özmen, Y., & Kaydok, T. 2014. Kare kesitli bir yüksek bina üzerindeki türbülanslı akışın sayısal olarak incelenmesi. Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, 17(2), 15-25.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hacımurat Demir 0000-0002-4819-2633

Yayımlanma Tarihi 28 Ağustos 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 37 Sayı: 2

Kaynak Göster

APA Demir, H. (2021). Numerical Investigation of Wind Loads on Building with Various Turbulence Models. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 37(2), 356-366.
AMA Demir H. Numerical Investigation of Wind Loads on Building with Various Turbulence Models. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. Ağustos 2021;37(2):356-366.
Chicago Demir, Hacımurat. “Numerical Investigation of Wind Loads on Building With Various Turbulence Models”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 37, sy. 2 (Ağustos 2021): 356-66.
EndNote Demir H (01 Ağustos 2021) Numerical Investigation of Wind Loads on Building with Various Turbulence Models. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 37 2 356–366.
IEEE H. Demir, “Numerical Investigation of Wind Loads on Building with Various Turbulence Models”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 37, sy. 2, ss. 356–366, 2021.
ISNAD Demir, Hacımurat. “Numerical Investigation of Wind Loads on Building With Various Turbulence Models”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 37/2 (Ağustos 2021), 356-366.
JAMA Demir H. Numerical Investigation of Wind Loads on Building with Various Turbulence Models. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2021;37:356–366.
MLA Demir, Hacımurat. “Numerical Investigation of Wind Loads on Building With Various Turbulence Models”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 37, sy. 2, 2021, ss. 356-6.
Vancouver Demir H. Numerical Investigation of Wind Loads on Building with Various Turbulence Models. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2021;37(2):356-6.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.