Derleme
BibTex RIS Kaynak Göster

Bioplastic an alternative to plastic in modern world: A systemized review

Yıl 2024, Cilt: 7 Sayı: 4, 614 - 625, 31.12.2024
https://doi.org/10.35208/ert.1467590

Öz

Introduction of plastic objects or plastic particles into the Earth's environment that adversely affect all life on the planet is refer as plastic pollution. Currently, plastic pollution is one of the biggest environmental concerns, and sustainable alternatives to traditional plastics are being explored. Using bioplastics, which are made from renewable resources and biodegradable, can reduce plastic pollution and promote environmental sustainability. This review article examines the role of bioplastics in today's society as alternative plastics. A variety of biodegradable polymers, including PLA, PHA, PBS, SB, CB and PUH, have been tested. Plastics made from bioplastics can be used in a wide range of industries, including packaging, biomedical devices, agriculture, and 3D printing. Despite tremendous advances, difficulties such as scalability, cost competitiveness, and end-of-life management remain, requiring additional research and innovation. For the development and implementation of bioplastic alternatives on a global scale, collaboration between academia, business, and governments is essential. Using bioplastics can reduce plastic pollution, greenhouse gas emissions, and promote a more sustainable future. This review summarizes a few important bioplastics, their properties, and their uses. In order to address the challenges of plastic pollution in the 21st century, it is important to switch to biodegradable and ecologically friendly materials.

Kaynakça

  • I. Manisalidis, E. Stavropoulou, A. Stavropoulos, and E. Bezirtzoglou, “Environmental and Health Impacts of Air Pollution: A Review,” Frontiers in Public Health Vol. 8, 2020. [CrossRef]
  • C. Stewart, D. E. Damby, C. J. Horwell, T. Elias, E. Ilyinskaya, I. Tomašek, B. M. Longo, A. Schmidt, H. K. Carlsen, E. Mason, P. J. Baxter, S. Cronin, C. Witham, “Volcanic air pollution and human health: recent advances and future directions,” Bulletin of Volcanology, Vol. 84 (1), pp. 11, 2021. [CrossRef]
  • L. Cheng, K. M. McDonald, R. P. Angle, and H. S. Sandhu, “Forest fire enhanced photochemical air pollution. A case study,” Atmospheric Environment, Vol. 32(4), pp. 673-681, 1998. [CrossRef]
  • J. Laothawornkitkul, J. E. Taylor, N. D. Paul, and C. N. Hewitt, “Biogenic volatile organic compounds in the Earth system,” New Phytologist, Vol. 183(1), pp. 27-51, 2009. [CrossRef]
  • A. Miri, H. Ahmadi, A. Ghanbari, A. Moghaddamnia, Dust Storms Impacts on Air Pollution and Public Health under Hot and Dry Climate, 2008.
  • G. K. Heilig, “The greenhouse gas methane (CH4): Sources and sinks, the impact of population growth, possible interventions,” Population and Environment, Vol. 16(2), pp. 109-137, 1994. [CrossRef]
  • M. F. Hayat, and A. Abbas, "Impacts of Industrial Pollution on Human Health: A Case Study of S.I.T.E Area Karachi", Journal of Social Sciences Review, Vol. 3(2), pp. 393-402, 2023. [CrossRef]
  • A. U. Bajwa, H. A. Sheikh, "Contribution of Road Transport to Pakistan’s Air Pollution in the Urban Environment,” Air Vol. 1(4), pp. 237-257, 2023. [CrossRef]
  • P. Kumar, V. Kumar, "Preface to the Special Issue “Agricultural Environmental Pollution, Risk Assessment, and Control,” Agriculture Vol. 14(1), Article 104, 2024. [CrossRef]
  • I. R. Abubakar, and K. M. Maniruzzaman, “Environmental Sustainability Impacts of Solid Waste Management Practices in the Global South", International Journal of Environmental Research And Public Health, Vol. 19(19), pp. 1-26, 2022. [CrossRef]
  • K. Apte, and S. Salvi, “Household air pollution and its effects on health,” F1000 Research, Vol. 5, 2016.
  • K. Vohra, A. Vodonos, J. Schwartz, E. A. Marais, M. P. Sulprizio, L. J. Mickley, "Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem", Environmental Research, Vol. 195 Article 110754, 2021. [CrossRef]
  • G. Rocher-Ros, E. H. Stanley, L. C. Loken, N. J. Casson, P. A. Raymond, S. Liu, G. Amatulli, and R. A. Sponseller, “Global methane emissions from rivers and streams, Nature Vol. 621 (7979), pp. 530-535, 2023. [CrossRef]
  • R. N. Colvile, E. J. Hutchinson, J. S. Mindell, R. F. Warren, “The transport sector as a source of air pollution,” Atmospheric Environment, Vol. 35(9), pp. 1537-1565, 2001. [CrossRef]
  • V. P. Aneja, W. H. Schlesinger, J. W. Erisman, "Effects of Agriculture upon the Air Quality and Climate: Research, Policy, and Regulations", Environmental Science & Technology, Vol. 43 (12), pp. 4234-4240, 2009. [CrossRef]
  • A. Bikis, “Urban Air Pollution and Greenness in Relation to Public Health,” Journal of Environmental and Public Health, Vol. 2023, Article 8516622, 2023. [CrossRef]
  • X. Q. Jiang, X. D. Mei, and D. Feng, “Air pollution and chronic airway diseases: what should people know and do?,” Journal of Thoracic Disease, Vol. 8(1), pp. E31-40, 2016.
  • R. D. Brook, B. Franklin, W. Cascio, Y. Hong, G. Howard, M. Lipsett, R. Luepker, M. Mittleman, J. Samet, S. C. Smith, I. and Tager, “Air pollution and cardiovascular disease," Circulation Vol. 109 (21), pp. 2655-2671, 2004. [CrossRef]
  • A. R. Alhussaini, M. R. Aljabri, Z. T. Al-Harbi, G. Abdulrahman Almohammadi, T. M. Al-Harbi, S. Bashir, "Air Pollution and Its Adverse Effects on the Central Nervous System", Cureus Vol. 15 (5), Article e38927, 2023. [CrossRef]
  • A. Conforti, M. Mascia, G. Cioffi, C. De Angelis, G. Coppola, P. De Rosa, R. Pivonello, C. Alviggi, and G. De Placido, “Air pollution and female fertility: a systematic review of literature,” Reproductive Biology and Endocrinology : RB&E Vol. 16 (1), pp. 117, 2018. [CrossRef]
  • A.-C. Pinho-Gomes, E. Roaf, G. Fuller, D. Fowler, A. Lewis, H. ApSimon, C. Noakes, P. Johnstone, and S. Holgate, “Air pollution and climate change,” The Lancet Planetary Health Vol. 7 (9), pp. e727-e728, 2023. [CrossRef]
  • W. W. Kellogg, S. H. Schneider, "Global air pollution and climate change," IEEE Transactions on Geoscience Electronics, Vol. 16(1), pp. 44-50, 1978. [CrossRef]
  • P. Grennfelt, A. Engleryd, M. Forsius, Ø. Hov, H. Rodhe, and E. Cowling, “Acid rain and air pollution: 50 years of progress in environmental science and policy,” Ambio, Vol. 49(4), pp. 849-864, 2020. [CrossRef]
  • G. Abrahamsen, “Air Pollution and Soil Acidification, in: T. C. Hutchinson, K. M. Meema (Eds.) Effects of Atmospheric Pollutants on Forests,” Wetlands and Agricultural Ecosystems, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 321-331, 1987. [CrossRef]
  • S. Anjum, A. H. Syeda, M. Jabeen, A. M. Zafar, A. Shaheen, and M. Arshad, “Physiochemical analysis of river sutlej, sindh and the arabian sea to evaluate the water quality,” Pakistan Journal of Analytical and Environmental Chemistry, Vol. 24(1), Article 12, 2023. [CrossRef]
  • J. Ahmed, A. Thakur, and A. Goyal, “Industrial Wastewater and Its Toxic Effects, in: M. P. Shah (Ed.), Biological Treatment of Industrial Wastewater,” The Royal Society of Chemistry, 2021. [CrossRef]
  • S. M. Rad, A. K. Ray, S. Barghi, "Water Pollution and Agriculture Pesticide", Clean Technologies, Vol. 4(4), pp. 1088-1102, 2022. [CrossRef]
  • T. Kaur, and A. Sinha, “Pesticides in Agricultural Run Offs Affecting Water Resources: A Study of Punjab (India),” Agricultural Sciences Vol. 10, pp. 1381-1395, 2019. [CrossRef]
  • L. Lin, H. Yang, X. Xu, “Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review", Frontiers in Environmental Science ,Vol. 10, 2022. [CrossRef]
  • A. Punia, S. K. Singh, Chapter 1 - Contamination of water resources in the mining region, in: A. Ahamad, S. I. Siddiqui, P. Singh (Eds.), Contamination of Water, Academic Press, pp. 3-17, 2021. [CrossRef]
  • G. M. Shayo, E. Elimbinzi, G. N. Shao, and C. Fabian, “Severity of waterborne diseases in developing countries and the effectiveness of ceramic filters for improving water quality,” Bulletin of the National Research Centre, Vol. 47(1), Article 113, 2023. [CrossRef]
  • A. Azizullah, M. N. K. Khattak, P. Richter, and D.-P. Häder, “Water pollution in Pakistan and its impact on public health — A review,” Environment International, Vol. 37(2), pp. 479-497, 2011. [CrossRef]
  • I. Smith, “Water pollution and cancer: An updated review,” Science Insights, Vol. 43 pp. 1079-1086, 2023. [CrossRef]
  • H. Yang, J. B. Wang, X. K. Wang, J. H. Fan, and Y. L. Qiao, “Association between type of drinking water and upper gastrointestinal cancer incidence in the Linxian General Population,” BMC Cancer, Vol. 23(1), Article 397, 2023. [CrossRef]
  • W. L. Silver, T. Perez, A. Mayer, and A. R. Jones, “The role of soil in the contribution of food and feed,” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, Vol. 376(1834), Article 20200181, 2021. [CrossRef]
  • N.-U. Amin, and T. Ahmad, “Contamination of soil with heavy metals from industrial effluent and their translocation in green vegetables of Peshawar, Pakistan,” RSC Advances, Vol. 5(19), pp. 14322-14329, 2015. [CrossRef]
  • T. Münzel, and O. Hahad, “Soil and water pollution and human health: what should cardiologists worry about?,” Cardiovascular Research, Vol. 119(2), pp. 440-449, 2023. [CrossRef]
  • L. Santucci, E. Carol, and C. Tanjal, “Industrial waste as a source of surface and groundwater pollution for more than half a century in a sector of the Río de la Plata coastal plain (Argentina),” Chemosphere, Vol. 206, pp. 727-735, 2018. [CrossRef]
  • T. Asami, “Soil Pollution by Metals from Mining and Smelting Activities,” in: W. Salomons, U. Förstner (Eds.), Chemistry and Biology of Solid Waste: Dredged Material and Mine Tailings, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 143-169, 1988. [CrossRef]
  • V. Pecina, D. Juřička, J. Hedbávný, M. Klimánek, J. Kynický, M. Brtnický, and R. Komendová, “The impacts of mining on soil pollution with metal(loid)s in resource-rich Mongolia,” Scientific Reports, Vol. 13(1), Article 2763, 2023. [CrossRef]
  • H. J. Tindwa, and B. R. Singh, “Soil pollution and agriculture in sub-Saharan Africa: State of the knowledge and remediation technologies,” Frontiers in Soil Science, Vol. 2, 2023. [CrossRef]
  • X. Zhang, L. He, X. Yang, and W. Gustave, “Editorial: Soil pollution, risk assessment and remediation,” Frontiers in Environmental Science, Vol. 11, 2023. [CrossRef]
  • Zeenat, A. Elahi, D. A. Bukhari, S. Shamim, and A. Rehman, “Plastics degradation by microbes: A sustainable approach,” Journal of King Saud University – Science, Vol. 33(6), Article 101538, 2021. [CrossRef]
  • B. Sushmitha, K. Vanitha, and B. Rangaswamy, “Bioplastics–a review,” International Journal of Modern Trends in Engineering and Research, Vol. 3(4), pp. 411-413, 2016.
  • R. Geyer, J. R. Jambeck, and K. L. Law, “Production, use, and fate of all plastics ever made,” Science Advances, Vol. 3(7), Article e1700782, 2017. [CrossRef]
  • C. J. Rhodes, “Plastic pollution and potential solutions,” Science Progress, Vol. 101(3), pp. 207-260, 2018. [CrossRef]
  • A. L. Andrady, and M. A. Neal, “Applications and societal benefits of plastics,” Philosophical transactions of the Royal Society of London Series B, Biological Sciences, Vol. 364(1526), pp. 1977-1984, 2009. [CrossRef]
  • Y. Chen, A. K. Awasthi, F. Wei, Q. Tan, and J. Li, “Single-use plastics: Production, usage, disposal, and adverse impacts,” Science of The Total Environment, Vol. 752, Article141772, 2021. [CrossRef]
  • B. Li, J. Liu, B. Yu, and X. Zheng, “The environmental impact of plastic grocery bags and their alternatives,” IOP Conference Series: Earth and Environmental Science, Vol. 1011(1), Article 012050, 2022. [CrossRef]
  • N. Rustagi, S. K. Pradhan, and R. Singh, “Public health impact of plastics: An overview,” Indian Journal of Occupational and Environmental Medicine, Vol. 15(3), pp. 100-103, 2011. [CrossRef]
  • Y. Lee, and J. Cho, “Health effects of microplastic exposures: Current issues and perspectives in South Korea,” Yonsei Medical Journal Vol. 64(5), pp. 301-308, 2023. [CrossRef]
  • S. Ghosh, J. K. Sinha, S. Ghosh, K. Vashisth, S. Han, R. Bhaskar, “Microplastics as an emerging threat to the global environment and human health,” Sustainability, Vol. 15(14), Article 10821, 2023. [CrossRef]
  • Z. Akdogan, and B. Guven, “Microplastics in the environment: A critical review of current understanding and identification of future research needs,” Environmental Pollution, Vol. 254, Article 113011, 2019. [CrossRef]
  • Y. Li, L. Tao, Q. Wang, F. Wang, G. Li, and M. Song, “Potential health impact of microplastics: A review of environmental distribution, human exposure, and toxic effects,” Environment & Health, Vol. 1(4), pp. 249-257, 2023. [CrossRef]
  • S. Singh, B. Sharma, S. S. Kanwar, and A. Kumar, “Lead phytochemicals for anticancer drug development,” Frontiers in Plant Science Vol. 7, Article 1667, 2016. [CrossRef]
  • E. Baumann, “Ueber einige Vinylverbindungen,” Universität Tübingen, 1872. [CrossRef]
  • H. Von Pechmann, and L. Frobenius, “Ber. deutsch, ehem,” Ges, Vol. 31 Article 2643, 1898. [CrossRef]
  • P. J. Liu, M. Saleh, E. Pot, B. Goodrich, R. Sepassi, L. Kaiser, and N. Shazeer, “Generating wikipedia by summarizing long sequences,” arXiv preprint arXiv:1801.10198, 2018.
  • R. Kumar, A. Verma, A. Shome, R. Sinha, S. Sinha, P. K. Jha, … and P. V. Vara Prasad, “Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions,” Sustainability Vol. 13(17), Article 9963, 2021. [CrossRef]
  • L. Lebreton, and A. Andrady, “Future scenarios of global plastic waste generation and disposal,” Palgrave Communications, Vol. 5(1), Article 6, 2019. [CrossRef]
  • L. Wang, G. Nabi, L. Yin, Y. Wang, S. Li, Z. Hao, and D. Li, “Birds and plastic pollution: recent advances,” Avian Research, Vol. 12(1), Article 59, 2021. [CrossRef]
  • C. Wilcox, E. Van Sebille, and B. D. Hardesty, “Threat of plastic pollution to seabirds is global, pervasive, and increasing,” Proceedings of the National Academy of Sciences, Vol. 112(38), pp. 11899-11904, 2015. [CrossRef]
  • C. M. Rochman, “The Complex Mixture, Fate and Toxicity of Chemicals Associated with Plastic Debris in the Marine Environment,” in: M. Bergmann, L. Gutow, M. Klages (Eds.), Marine Anthropogenic Litter, Springer International Publishing, Cham, pp. 117-140, 2015. [CrossRef]
  • D. K. Barnes, F. Galgani, R. C. Thompson, and M. Barlaz, “Accumulation and fragmentation of plastic debris in global environments,” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, Vol. 364(1526), pp. 1985-1998, 2009. [CrossRef]
  • A. L. Andrady, “Microplastics in the marine environment,” Marine Pollution Bulletin, Vol. 62(8), pp. 1596-1605, 2011. [CrossRef]
  • R. Verma, V. Shankarappa, M. Papireddy, and A. N. S. Gowda, “Toxic pollutants from plastic waste- a review,” Procedia Environmental Sciences, Vol. 35, pp. 701-708, 2016. [CrossRef]
  • P. Stegmann, V. Daioglou, M. Londo, D. P. van Vuuren, and M. Junginger, “Plastic futures and their CO2 emissions,” Nature, Vol. 612(7939), pp. 272-276, 2022. [CrossRef]
  • N. Rajendran, S. Puppala, R. Sneha, and R. Angeeleena, “Seaweeds can be a new source for bioplastics,” Journal of Pharmacy Research, Vol. 5(3), pp. 1476-1479, 2012.
  • A. Mohanty, M. Misra, L. Drzal, S. Selke, B. Harte, and G. Hinrichsen, “Natural fibers, biopolymers, and biocomposites,” in: M. M. Amar K. Mohanty0, Lawrence T. Drzal (Ed.), CRC Press, Boca Raton, pp. 896, 2005. [CrossRef]
  • J. A. Brydson, 1 - The Historical Development of Plastics Materials, in: J. A. Brydson (Ed.), Plastics Materials (Seventh Edition), Butterworth-Heinemann, Oxford, pp. 1-18, 1999. [CrossRef]
  • S. Suzuki, and Y. Ikada, “Medical applications,” Poly(Lactic Acid), pp. 443-456, 2010. [CrossRef]
  • N. D. Bikiaris, I. Koumentakou, C. Samiotaki, D. Meimaroglou, D. Varytimidou, A. Karatza, … , and G. Z. Papageorgiou, “Recent advances in the investigation of poly(lactic acid) (PLA) Nanocomposites: Incorporation of various nanofillers and their properties and applications,” Polymers, Vol. 15(5), Article 1196, 2023. [CrossRef]
  • J.-G. Rosenboom, R. Langer, and G. Traverso, “Bioplastics for a circular economy,” Nature Reviews Materials, Vol. 7(2), pp. 117-137, 2022. [CrossRef]
  • J. H. Song, R. J. Murphy, R. Narayan, and G. B. Davies, “Biodegradable and compostable alternatives to conventional plastics,” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, Vol. 364(1526), pp. 2127-2139, 2009. [CrossRef]
  • T. Palmeiro-Sánchez, V. O’Flaherty, and P. N. L. Lens, “Polyhydroxyalkanoate bio-production and its rise as biomaterial of the future,” Journal of Biotechnology, Vol. 348, pp. 10-25, 2022. [CrossRef]
  • F. A. Lothfy, M. F. Haron, and H. A. Rafaie, “Fabrication and characterization of jackfruit seed powder and polyvinyl alcohol blend as biodegradable plastic,” Journal Polymer Science Technology, Vol. 3(2), pp. 1-5, 2018.
  • A. Mohapatra, S. Prasad, and H. Sharma, “Bioplastics-utilization of waste banana peels for synthesis of polymeric films,” [Master thesis], University of Mumbai, 2015.
  • G. Goswami, M. G. Goswami, and P. Purohit, “Bioplastics from organic waste,” International Journal of Engineering Research and Technology, Vol. 3(23), pp. 1-3, 2015.
  • N. N. Zulkafli, “Production of bioplastic from agricultural waste,” UMP, 2014.
  • I. S. Sidek, S. F. S. Draman, S. R. S. Abdullah, and N. Anuar, “Current development on bioplastics and its future prospects: an introductory review,” INWASCON Technology Magazine, Vol. 1, pp. 03-08, 2019. [CrossRef]
  • A. Cifriadi, T. Panji, N. A. Wibowo, and K. Syamsu, “Bioplastic production from cellulose of oil palm empty fruit bunch,” IOP Conference Series: Earth and Environmental Science, IOP Publishing, Vol. 2017, Article 012011, 2017. [CrossRef]
  • K. Khosravi-Darani, and D. Bucci, “Application of poly (hydroxyalkanoate) in food packaging: Improvements by nanotechnology,” Chemical and Biochemical Engineering Quarterly, Vol. 29(2), pp. 275-285, 2015. [CrossRef]
  • V. S. Keziah, R. Gayathri, and V. V. Priya, “Biodegradable plastic production from corn starch,” Drug Invention Today, Vol. 10(7), pp. 1315-1317, 2018.
  • M. B. Agustin, B. Ahmmad, S. M. M. Alonzo, and F. M. Patriana, “Bioplastic based on starch and cellulose nanocrystals from rice straw,” Journal of Reinforced Plastics and Composites, Vol. 33(24), pp. 2205-2213, 2014. [CrossRef]
  • M. Delgado, M. Felix, and C. Bengoechea, “Development of bioplastic materials: From rapeseed oil industry by products to added-value biodegradable biocomposite materials,” Industrial Crops and Products, Vol. 125, pp. 401-407, 2018. [CrossRef]
  • N. A. Faris, N. Z. Noriman, S. T. Sam, C. M. Ruzaidi, M. F. Omar, and A. W. M. Kahar, “Current research in biodegradable plastics,” Applied Mechanics and Materials, Vol. 679, pp. 273-280, 2014. [CrossRef]
  • I. M. Shamsuddin, J. A. Jafar, A. S. A. Shawai, S. Yusuf, M. Lateefah, and I. Aminu, “Bioplastics as better alternative to petroplastics and their role in national sustainability: A review,” Advances in Bioscience and Bioengineeringat, Vol. 5(4), Article 63, 2017. [CrossRef]
  • N. Jabeen, I. Majid, and G. A. Nayik, “Bioplastics and food packaging: A review,” Cogent Food & Agriculture, Vol. 1(1), Article 1117749, 2015. [CrossRef]
  • W. Ali, N. Zaki, and S. Obiad, “Production of bioplastic by bacteria isolated from local soil and organic wastes,” Current Research in Biotechnology, Vol. 5, pp. 1012-1017, 2017.
  • S. Pradhan, “Optimization and characterization of bioplastic produced,” Bacillus cereus SE1, 2014.
  • S. K. Das, A. Sathish, and J. Stanley, “Production of biofuel and bioplastic from Chlorella pyrenoidosa,” Materials Today: Proceedings, Vol. 5(8), pp. 16774-16781, 2018. [CrossRef]
  • B. Momani, “Assessment of the impacts of bioplastics: energy usage, fossil fuel usage, pollution, health effects, effects on the food supply, and economic effects compared to petroleum based plastics,” An Interactive Qualifying Project Report. Worcester Polytechnic Institute, 2009.
  • S. Khan, Isolation Of Extracellular Proteins From Ophiostoma Ulmi And Their Effect On Tensile Properties Of Thermoplastic Starch, University of Toronto, 2010.
  • I. E. Napper, and R. C. Thompson, “Environmental deterioration of biodegradable, oxo-biodegradable, compostable, and conventional plastic carrier bags in the sea, soil, and open-air over a 3-year period,” Environmental Science & Technology, Vol. 53(9), pp. 4775-4783, 2019. [CrossRef]
  • S. M. Emadian, T. T. Onay, and B. Demirel, “Biodegradation of bioplastics in natural environments,” Waste Management, Vol. 59, pp. 526-536, 2017. [CrossRef]
  • M. M. Abe, J. R. Martins, and P. B. Sanvezzo, “Advantages and disadvantages of bioplastics production from starch and lignocellulosic components,” Polymers, Vol. 13(15), pp. 2484-2509, 2021. [CrossRef]
  • J. Xu, and Y. Li, "Wheat gluten–based coatings and films: Preparation, properties, and applications," Journal of Food Science, Vol. 88(2), pp. 582-594, 2023. [CrossRef]
  • R. Auras, B. Harte, and S. Selke, “An overview of polylactides as packaging materials,” Macromolecular Bioscience, Vol. 4(9), pp. 835-864, 2004. [CrossRef]
  • T. N. Tran, and B. T. Mai, “Transparent bioplastic derived from CO(2)-based polymer functionalized with oregano waste extract toward active food packaging,” ACS Applied Materials & Interfaces, Vol. 12(41), pp. 46667-46677, 2020. [CrossRef]
  • J. Gonzalez-Gutierrez, P. Partal, M. Garcia-Morales, and C. Gallegos, “Development of highly-transparent protein/starch-based bioplastics,” Bioresource Technology, Vol. 101(6), pp. 2007-2013, 2010. [CrossRef]
  • A. Jayakumar, S. Radoor, S. Siengchin, G. H. Shin, and J. T. Kim, “Recent progress of bioplastics in their properties, standards, certifications and regulations: A review,” Science of The Total Environment, Vol. 878, Article 163156, 2023. [CrossRef]
  • T. Kaneko, S. Tateyam, M. Okajima, S. Hojoon, and N. Takaya, “Ultrahigh heat-resistant, transparent bioplastics from exotic amino acid,” Materials Today: Proceedings, Vol. 3, pp. S21-S29, 2016. [CrossRef]
  • G. V. Blancia, “The potential of mango starch and snake plant fibers as bio-plastic,” Asian Journal of Plant Science and Research, Vol. 11(05), pp. 171-175, 2021.
  • M. M. Burrell, “Starch: the need for improved quality or quantity—an overview,” Journal of Experimental Botany, Vol. 54(382), pp. 451-456, 2003. [CrossRef]
  • M. K. Marichelvam, M. Jawaid, and M. Asim, “Corn and rice starch-based bio-plastics as alternative packaging materials,” Fibers, Vol. 7(4), Article 32, 2019. [CrossRef]
  • C. Lee, and I. D. Y. Sieng, “A basic characterisation study of bioplastics via gelatinization of corn starch,” Journal of Applied Science & Process Engineering Vol. 8 pp. 820-833, 2021. [CrossRef]
  • R. F. Santana, R. C. F. Bonomo, O. R. R. Gandolfi, L. B. Rodrigues, L. S. Santos, A. C. Dos Santos Pires, C. P. de Oliveira, R. da Costa Ilhéu Fontan, and C. M. Veloso, “Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol,” Journal of Food Science and Technology Vol. 55(1), pp. 278-286, 2018. [CrossRef]
  • F. Xie, L. Yu, B. Su, P. Liu, J. Wang, H. Liu, and L. Chen, “Rheological properties of starches with different amylose/amylopectin ratios,” Journal of Cereal Science, Vol. 49(3), pp. 371-377, 2009. [CrossRef]
  • S. Agarwal, “Major factors affecting the characteristics of starch based biopolymer films,” European Polymer Journal, Vol. 160, Article 110788, 2021. [CrossRef]
  • R. Gadhave, A. Das, P. Mahanwar, and P. Gadekar, “Starch based bio-plastics: The future of sustainable packaging,” Open Journal of Polymer Chemistry, Vol. 08, pp. 21-33, 2018. [CrossRef]
  • P. Kuz, and M. Ates, “Starch-based bioplastic materials for packaging industry,” Journal of Sustainable Construction Materials and Technologies, Vol. 5, pp. 399-406, 2020. [CrossRef]
  • H. Onyeaka, K. Obileke, G. Makaka, and N. Nwokolo, “Current research and applications of starch-based biodegradable films for food packaging,” Polymers, Vol. 14(6), Article 16, 2022. [CrossRef]
  • M. M. Abe, J. R. Martins, P. B. Sanvezzo, M. Brienzo, P. Halley, V. R. Botaro, J. V. Macedo, and M. C. Branciforti, “Advantages and disadvantages of bioplastics production from starch and lignocellulosic components,” Polymers, Vol. 13(15), 2021. [CrossRef]
  • S. S. Ali, E. A. Abdelkarim, T. Elsamahy, R. Al-Tohamy, F. Li, M. Kornaros, …, and J. Sun, “Bioplastic production in terms of life cycle assessment: A state-of-the-art review,” Environmental Science and Ecotechnology, Vol. 15, Article 100254, 2023. [CrossRef]
  • Isroi, A. Cifriadi, T. Panji, N. A. Wibowo, and K. Syamsu, “Bioplastic production from cellulose of oil palm empty fruit bunch,” IOP Conference Series: Earth and Environmental Science, Vol. 65(1), Article 012011, 2017. [CrossRef]
  • S. Steven, A. N. Fauza, Y. Mardiyati, S. P. Santosa, and S. M. Shoimah, “Facile preparation of cellulose bioplastic from cladophora sp. algae via hydrogel method,” Polymers, Vol. 14(21), Article 4699, 2022. [CrossRef]
  • U. Kong, N. F. Mohammad Rawi, and G. S. Tay, “The potential applications of reinforced bioplastics in various industries: A review,” Polymers, Vol. 15(10), Article 2399, 2023. [CrossRef]
  • Y. Kuang, C. Chen, G. Pastel, Y. Li, J. Song, R. Mi, …, and L. Hu, “Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices,” Advanced Energy Materials, Vol. 8(33), Article 1802398, 2018. [CrossRef]
  • N. M. Nurazzi, M. A. Jenol, S. H. Kamarudin, H. A. Aisyah, L. C. Hao, S. M. Yusuff, …, and A. Norli, “19 - Nanocellulose composites in the automotive industry,” in: S. M. Sapuan, M. N. F. Norrrahim, R. A. Ilyas, C. Soutis (Eds.), Industrial Applications of Nanocellulose and Its Nanocomposites, Woodhead Publishing, pp. 439-467, 2022. [CrossRef]
  • H. Chen, J. Wang, Y. Cheng, C. Wang, H. Liu, H. Bian, …, and W. Han, “Application of protein-based films and coatings for food packaging: A review,” Polymers, Vol. 11(12), 2019. [CrossRef]
  • S. S. Purewal, A. Kaur, S. P. Bangar, P. Singh, and H. Singh, “Protein-based films and coatings: An innovative approach,” Coatings, Vol. 14(1), Article 32, 2024. [CrossRef]
  • J. Yu, S. Xu, B. Liu, H. Wang, F. Qiao, X. Ren, and Q. Wei, “PLA bioplastic production: From monomer to the polymer,” European Polymer Journal, Vol. 193, Article 112076, 2023. [CrossRef]
  • J. Prendiz, J. Vega-Baudrit, and M. Mena, “Polylactic acid (PLA) as a bioplastic and its possible applications in the food industry,” Food Science and Nutrition, Vol. 5, 2019. [CrossRef]
  • J. Lu, R. C. Tappel, and C. T. Nomura, “Mini-Review: Biosynthesis of Poly(hydroxyalkanoates),” Polymer Reviews, Vol. 49(3), pp. 226-248, 2009. [CrossRef]
  • K. Bhubalan, W.-H. Lee, and K. Sudesh, “Polyhydroxyalkanoate, biodegradable polymers in clinical use and clinical development, Wiley, pp. 247-315, 2011. [CrossRef]
  • V. Siracusa, and I. Blanco, “Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and bio-poly(ethylene terephthalate) (Bio-PET): Recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications,” Polymers, Vol. 12(8), 2020. [CrossRef]
  • K. Kaewmahit, N. Ruengrit, C. Deetuam, and P. Charoeythornkhajhornchai, “Comparison between Bio-PET and PET for food container,” Journal of Polymer Science and Engineering Vol. 6, Article 3040, 2023. [CrossRef]
  • C. Aversa, M. Barletta, M. Puopolo, and S. Vesco, “Cast extrusion of low gas permeability bioplastic sheets in PLA/PBS and PLA/PHB binary blends,” Polymer-Plastics Technology and Materials, Vol. 59(3), pp. 231-240, 2020. [CrossRef]
  • L. Aliotta, M. Seggiani, P. Cinelli, V. Gigante, A. Lazzeri, "A Brief Review of Poly (Butylene Succinate) (PBS) and Its Main Copolymers: Synthesis, blends, composites, biodegradability, and applications,” Polymers, Vol. 14(4), 2022. [CrossRef]
  • T. Anders, H. Keul, and M. Möller, “Synthesis and characterization of polyhydroxyurethanes prepared from difunctional six-membered ring carbonates,” Designed Monomers and Polymers, Vol. 14(6), pp. 593-608, 2011. [CrossRef]
  • C. Mokhtari, F. Malek, S. Halila, N. Belgacem, and R. Khiari, “New biobased polyurethane materials from modified vegetable oil,” Journal of Renewable Materials, Vol. 9, pp. 1213-1223, 2021. [CrossRef]
  • C.-H. Tsou, H.-T. Lee, H.-A. Tsai, H.-J. Cheng, and M.-C. Suen, “Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2,6-pyridinedimethanol as a chain extender,” Polymer Degradation and Stability, Vol. 98, pp. 643–650, 2013. [CrossRef]
  • F. Xie, T. Zhang, P. Bryant, V. Kurusingal, J. M. Colwell, and B. Laycock, “Degradation and stabilization of polyurethane elastomers,” Progress in Polymer Science, Vol. 90, pp. 211-268, 2019. [CrossRef]
  • M. Adnan, A. J. Siddiqui, S. A. Ashraf, M. Snoussi, R. Badraoui, M. Alreshidi, ..., and M. Patel, “Polyhydroxybutyrate (PHB)-based biodegradable polymer from agromyces indicus: Enhanced production, characterization, and optimization,” Polymers, Vol. 14(19), Article 3982, 2022. [CrossRef]
  • A. Santos, L. Dalla Valentina, A. Schulz, and M. Tomaz, “From obtaining to degradation of PHB:Material properties. part I,” Ingeniería y Ciencia, Vol. 13(26), pp. 269-298, 2017. [CrossRef]
  • M. Shah, S. Rajhans, H. A. Pandya, and A. U. Mankad, “Bioplastic for future: A review then and now,” World Journal of Advanced Research and Reviews, Vol. 9(2), pp. 056-067, 2021. [CrossRef]
  • C. Ghorpade, S. Shetty, and K. Murthy, “Bioplastics production and applications: A mini review,” International Journal for Scientific Research & Development, Vol. 19(2), pp. 229-238, 2022.
  • G. Wadiye, and J. Dalmia, “Review of Types and Applications of Bioplastics,” International Advanced Research Journal in Science, Engineering and Technology, Vol. 7(6), pp. 55-59, 2020.
  • L. Shao, Y. Xi, and Y. Weng, “Recent advances in PLA-based antibacterial food packaging and its applications,” Molecules (Basel, Switzerland), Vol. 27, Article 18, 2022. [CrossRef]
  • T. A. Swetha, A. Bora, K. Mohanrasu, P. Balaji, R. Raja, K. Ponnuchamy, G. Muthusamy, and A. Arun, “A comprehensive review on polylactic acid (PLA) – Synthesis, processing and application in food packaging,” International Journal of Biological Macromolecules, Vol. 234, Article 123715, 2023. [CrossRef]
  • S. De Luca, D. Milanese, D. Gallichi-Nottiani, A. Cavazza, and C. Sciancalepore, “Poly(lactic acid) and its blends for packaging application: A review,” Clean Technologies, Vol. 5(4), pp. 1304-1343, 2023. [CrossRef]
  • A. V. Samrot, S. K. Samanvitha, N. Shobana, E. R. Renitta, and P. Senthilkumar, “The synthesis, characterization and applications of polyhydroxyalkanoates (PHAs) and PHA-Based nanoparticles", Polymers Vol. 13(19), 2021. [CrossRef]
  • F. Masood, “Chapter 8 - Polyhydroxyalkanoates in the Food Packaging Industry,” in: A. E. Oprea, A. M. Grumezescu (Eds.), Nanotechnology Applications in Food, Academic Press, pp. 153-177, 2017. [CrossRef]
  • S. A. Acharjee, P. Bharali, B. Gogoi, V. Sorhie, B. Walling, and Alemtoshi, “PHA-based bioplastic: A potential alternative to address microplastic pollution,” Water, Air, and Soil Pollution, Vol. 234 (1), Article 21, 2023. [CrossRef]
  • M. Barletta, C. Aversa, M. Ayyoob, A. Gisario, K. Hamad, M. Mehrpouya, and H. Vahabi, “Poly(butylene succinate) (PBS): Materials, processing, and industrial applications,” Progress in Polymer Science, Vol. 132, Article 101579, 2022. [CrossRef]
  • A. Mohanty, M. Misra, and G. Hinrichsen, “Biofibres, biodegradable polymers and biocomposites: An overview,” Macromolecular Materials and Engineering, Vol. 276-277, pp. 1-24, 2000. [CrossRef]
  • F. S. Fattahi, A. Khoddami, and O. Avinc, “Sustainable, Renewable, and Biodegradable Poly(Lactic Acid) Fibers and Their Latest Developments in the Last Decade,” in: S. S. Muthu, M. A. Gardetti (Eds.), Sustainability in the Textile and Apparel Industries: Sourcing Synthetic and Novel Alternative Raw Materials, Springer International Publishing, Cham, pp. 173-194, 2020. [CrossRef]
  • L. Yu, S. Petinakis, K. Dean, A. Bilyk, and D. Wu, “Green polymeric blends and composites from renewable resources,” Macromolecular Symposia, Vol. 249-250(1), pp. 535-539, 2007. [CrossRef]
  • Z. Mansoor, F. Tchuenbou-Magaia, M. Kowalczuk, G. Adamus, G. Manning, M. Parati, I. Radecka, and H. Khan, “Polymers use as mulch films in agriculture—a review of history, problems and current trends,” Polymers, Vol. 14(23), Article 5062, 2022. [CrossRef]
  • M. Faizan, H. Nadeem, A. Arif, and W. Zaheer, “Bioplastics from biopolymers: An eco-friendly and sustainable solution of plastic pollution,” Polymer Science, Series C, Vol. 63(1), pp. 47-63, 2021. [CrossRef]
  • H. Pirasteh-Anosheh, and S. Hashemi, “Priming, a promising practical approach to improve seed germination and plant growth in saline conditions,” Asian Journal of Agriculture and Food Sciences, Vol. 8, pp. 6-9, 2020. [CrossRef]
  • V. DeStefano, S. Khan, and A. Tabada, “Applications of PLA in modern medicine,” Engineered Regeneration, Vol. 1, pp. 76-87, 2020. [CrossRef]
  • V. Singh, T. Marimuthu, M. M. Makatini, and Y. E. Choonara, “Biopolymer-based wound dressings with biochemical cues for cell-instructive wound repair,” Polymers, Vol. 14(24), Article 5371, 2022. [CrossRef]
  • R. Masaeli, S. J. K. T, R. Dinarvand, M. Tahriri, V. Rakhshan, and M. Esfandyari-Manesh, “Preparation, characterization and evaluation of drug release properties of simvastatin-loaded plga microspheres,” Iranian Journal of Pharmaceutical Research, Vol. 15(Suppl), pp. 205-211, 2016.
  • P. Calvo, C. Remuñan-López, J. L. Vila-Jato, and M. J. Alonso, “Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines,” Pharmaceutical Research, Vol. 14(10), pp. 1431-1436, 1997. [CrossRef]
  • M. Saravanan, K. Bhaskar, G. Srinivasa Rao, and M. D. Dhanaraju, “Ibuprofen-loaded ethylcellulose/polystyrene microspheres: an approach to get prolonged drug release with reduced burst effect and low ethylcellulose content,” Journal of Microencapsulation, Vol. 20(3), pp. 289-302, 2003. [CrossRef]
  • J. Li, X. Zhang, A. Udduttula, Z. S. Fan, J. H. Chen, A. R. Sun, and P. Zhang, “Microbial-derived polyhydroxyalkanoate-based scaffolds for bone tissue engineering: Biosynthesis, properties, and perspectives,” Frontiers in Bioengineering and Biotechnology, Vol. 9, Article 763031, 2021. [CrossRef]
  • É. Bozó, H. Ervasti, N. Halonen, S. H. H. Shokouh, J. Tolvanen, O. Pitkänen, … and K. Kordas, “Bioplastics and Carbon-Based Sustainable Materials, Components, and Devices: Toward Green Electronics,” ACS Applied Materials & Interfaces, Vol. 13(41), pp. 49301-49312, 2021. [CrossRef]
  • M. N. Andanje, J. W. Mwangi, B. R. Mose, S. Carrara, “Biocompatible and biodegradable 3D printing from bioplastics: A review,” Polymers, Vol. 15(10), Article 2355, 2023. [CrossRef]
  • T. M. Joseph, A. Kallingal, A. M. Suresh, D. K. Mahapatra, M. S. Hasanin, J. Haponiuk, and S. Thomas, “3D printing of polylactic acid: recent advances and opportunities,” The International Journal of Advanced Manufacturing Technology, Vol. 125(3), pp. 1015-1035, 2023. [CrossRef]
  • M. K. Huda, and I. Widiastuti, “Natural fiber reinforced polymer in automotive application: A systematic literature review,” Journal of Physics: Conference Series, Vol. 1808(1), Article 012015, 2021. [CrossRef]
  • H. Vieyra, J. M. Molina-Romero, J. de Dios Calderón-Nájera, and A. Santana-Díaz, “Engineering, recyclable, and biodegradable plastics in the automotive industry: A review,” Polymers Vol. 14(16), Article 3412, 2022. [CrossRef]
Yıl 2024, Cilt: 7 Sayı: 4, 614 - 625, 31.12.2024
https://doi.org/10.35208/ert.1467590

Öz

Kaynakça

  • I. Manisalidis, E. Stavropoulou, A. Stavropoulos, and E. Bezirtzoglou, “Environmental and Health Impacts of Air Pollution: A Review,” Frontiers in Public Health Vol. 8, 2020. [CrossRef]
  • C. Stewart, D. E. Damby, C. J. Horwell, T. Elias, E. Ilyinskaya, I. Tomašek, B. M. Longo, A. Schmidt, H. K. Carlsen, E. Mason, P. J. Baxter, S. Cronin, C. Witham, “Volcanic air pollution and human health: recent advances and future directions,” Bulletin of Volcanology, Vol. 84 (1), pp. 11, 2021. [CrossRef]
  • L. Cheng, K. M. McDonald, R. P. Angle, and H. S. Sandhu, “Forest fire enhanced photochemical air pollution. A case study,” Atmospheric Environment, Vol. 32(4), pp. 673-681, 1998. [CrossRef]
  • J. Laothawornkitkul, J. E. Taylor, N. D. Paul, and C. N. Hewitt, “Biogenic volatile organic compounds in the Earth system,” New Phytologist, Vol. 183(1), pp. 27-51, 2009. [CrossRef]
  • A. Miri, H. Ahmadi, A. Ghanbari, A. Moghaddamnia, Dust Storms Impacts on Air Pollution and Public Health under Hot and Dry Climate, 2008.
  • G. K. Heilig, “The greenhouse gas methane (CH4): Sources and sinks, the impact of population growth, possible interventions,” Population and Environment, Vol. 16(2), pp. 109-137, 1994. [CrossRef]
  • M. F. Hayat, and A. Abbas, "Impacts of Industrial Pollution on Human Health: A Case Study of S.I.T.E Area Karachi", Journal of Social Sciences Review, Vol. 3(2), pp. 393-402, 2023. [CrossRef]
  • A. U. Bajwa, H. A. Sheikh, "Contribution of Road Transport to Pakistan’s Air Pollution in the Urban Environment,” Air Vol. 1(4), pp. 237-257, 2023. [CrossRef]
  • P. Kumar, V. Kumar, "Preface to the Special Issue “Agricultural Environmental Pollution, Risk Assessment, and Control,” Agriculture Vol. 14(1), Article 104, 2024. [CrossRef]
  • I. R. Abubakar, and K. M. Maniruzzaman, “Environmental Sustainability Impacts of Solid Waste Management Practices in the Global South", International Journal of Environmental Research And Public Health, Vol. 19(19), pp. 1-26, 2022. [CrossRef]
  • K. Apte, and S. Salvi, “Household air pollution and its effects on health,” F1000 Research, Vol. 5, 2016.
  • K. Vohra, A. Vodonos, J. Schwartz, E. A. Marais, M. P. Sulprizio, L. J. Mickley, "Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem", Environmental Research, Vol. 195 Article 110754, 2021. [CrossRef]
  • G. Rocher-Ros, E. H. Stanley, L. C. Loken, N. J. Casson, P. A. Raymond, S. Liu, G. Amatulli, and R. A. Sponseller, “Global methane emissions from rivers and streams, Nature Vol. 621 (7979), pp. 530-535, 2023. [CrossRef]
  • R. N. Colvile, E. J. Hutchinson, J. S. Mindell, R. F. Warren, “The transport sector as a source of air pollution,” Atmospheric Environment, Vol. 35(9), pp. 1537-1565, 2001. [CrossRef]
  • V. P. Aneja, W. H. Schlesinger, J. W. Erisman, "Effects of Agriculture upon the Air Quality and Climate: Research, Policy, and Regulations", Environmental Science & Technology, Vol. 43 (12), pp. 4234-4240, 2009. [CrossRef]
  • A. Bikis, “Urban Air Pollution and Greenness in Relation to Public Health,” Journal of Environmental and Public Health, Vol. 2023, Article 8516622, 2023. [CrossRef]
  • X. Q. Jiang, X. D. Mei, and D. Feng, “Air pollution and chronic airway diseases: what should people know and do?,” Journal of Thoracic Disease, Vol. 8(1), pp. E31-40, 2016.
  • R. D. Brook, B. Franklin, W. Cascio, Y. Hong, G. Howard, M. Lipsett, R. Luepker, M. Mittleman, J. Samet, S. C. Smith, I. and Tager, “Air pollution and cardiovascular disease," Circulation Vol. 109 (21), pp. 2655-2671, 2004. [CrossRef]
  • A. R. Alhussaini, M. R. Aljabri, Z. T. Al-Harbi, G. Abdulrahman Almohammadi, T. M. Al-Harbi, S. Bashir, "Air Pollution and Its Adverse Effects on the Central Nervous System", Cureus Vol. 15 (5), Article e38927, 2023. [CrossRef]
  • A. Conforti, M. Mascia, G. Cioffi, C. De Angelis, G. Coppola, P. De Rosa, R. Pivonello, C. Alviggi, and G. De Placido, “Air pollution and female fertility: a systematic review of literature,” Reproductive Biology and Endocrinology : RB&E Vol. 16 (1), pp. 117, 2018. [CrossRef]
  • A.-C. Pinho-Gomes, E. Roaf, G. Fuller, D. Fowler, A. Lewis, H. ApSimon, C. Noakes, P. Johnstone, and S. Holgate, “Air pollution and climate change,” The Lancet Planetary Health Vol. 7 (9), pp. e727-e728, 2023. [CrossRef]
  • W. W. Kellogg, S. H. Schneider, "Global air pollution and climate change," IEEE Transactions on Geoscience Electronics, Vol. 16(1), pp. 44-50, 1978. [CrossRef]
  • P. Grennfelt, A. Engleryd, M. Forsius, Ø. Hov, H. Rodhe, and E. Cowling, “Acid rain and air pollution: 50 years of progress in environmental science and policy,” Ambio, Vol. 49(4), pp. 849-864, 2020. [CrossRef]
  • G. Abrahamsen, “Air Pollution and Soil Acidification, in: T. C. Hutchinson, K. M. Meema (Eds.) Effects of Atmospheric Pollutants on Forests,” Wetlands and Agricultural Ecosystems, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 321-331, 1987. [CrossRef]
  • S. Anjum, A. H. Syeda, M. Jabeen, A. M. Zafar, A. Shaheen, and M. Arshad, “Physiochemical analysis of river sutlej, sindh and the arabian sea to evaluate the water quality,” Pakistan Journal of Analytical and Environmental Chemistry, Vol. 24(1), Article 12, 2023. [CrossRef]
  • J. Ahmed, A. Thakur, and A. Goyal, “Industrial Wastewater and Its Toxic Effects, in: M. P. Shah (Ed.), Biological Treatment of Industrial Wastewater,” The Royal Society of Chemistry, 2021. [CrossRef]
  • S. M. Rad, A. K. Ray, S. Barghi, "Water Pollution and Agriculture Pesticide", Clean Technologies, Vol. 4(4), pp. 1088-1102, 2022. [CrossRef]
  • T. Kaur, and A. Sinha, “Pesticides in Agricultural Run Offs Affecting Water Resources: A Study of Punjab (India),” Agricultural Sciences Vol. 10, pp. 1381-1395, 2019. [CrossRef]
  • L. Lin, H. Yang, X. Xu, “Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review", Frontiers in Environmental Science ,Vol. 10, 2022. [CrossRef]
  • A. Punia, S. K. Singh, Chapter 1 - Contamination of water resources in the mining region, in: A. Ahamad, S. I. Siddiqui, P. Singh (Eds.), Contamination of Water, Academic Press, pp. 3-17, 2021. [CrossRef]
  • G. M. Shayo, E. Elimbinzi, G. N. Shao, and C. Fabian, “Severity of waterborne diseases in developing countries and the effectiveness of ceramic filters for improving water quality,” Bulletin of the National Research Centre, Vol. 47(1), Article 113, 2023. [CrossRef]
  • A. Azizullah, M. N. K. Khattak, P. Richter, and D.-P. Häder, “Water pollution in Pakistan and its impact on public health — A review,” Environment International, Vol. 37(2), pp. 479-497, 2011. [CrossRef]
  • I. Smith, “Water pollution and cancer: An updated review,” Science Insights, Vol. 43 pp. 1079-1086, 2023. [CrossRef]
  • H. Yang, J. B. Wang, X. K. Wang, J. H. Fan, and Y. L. Qiao, “Association between type of drinking water and upper gastrointestinal cancer incidence in the Linxian General Population,” BMC Cancer, Vol. 23(1), Article 397, 2023. [CrossRef]
  • W. L. Silver, T. Perez, A. Mayer, and A. R. Jones, “The role of soil in the contribution of food and feed,” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, Vol. 376(1834), Article 20200181, 2021. [CrossRef]
  • N.-U. Amin, and T. Ahmad, “Contamination of soil with heavy metals from industrial effluent and their translocation in green vegetables of Peshawar, Pakistan,” RSC Advances, Vol. 5(19), pp. 14322-14329, 2015. [CrossRef]
  • T. Münzel, and O. Hahad, “Soil and water pollution and human health: what should cardiologists worry about?,” Cardiovascular Research, Vol. 119(2), pp. 440-449, 2023. [CrossRef]
  • L. Santucci, E. Carol, and C. Tanjal, “Industrial waste as a source of surface and groundwater pollution for more than half a century in a sector of the Río de la Plata coastal plain (Argentina),” Chemosphere, Vol. 206, pp. 727-735, 2018. [CrossRef]
  • T. Asami, “Soil Pollution by Metals from Mining and Smelting Activities,” in: W. Salomons, U. Förstner (Eds.), Chemistry and Biology of Solid Waste: Dredged Material and Mine Tailings, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 143-169, 1988. [CrossRef]
  • V. Pecina, D. Juřička, J. Hedbávný, M. Klimánek, J. Kynický, M. Brtnický, and R. Komendová, “The impacts of mining on soil pollution with metal(loid)s in resource-rich Mongolia,” Scientific Reports, Vol. 13(1), Article 2763, 2023. [CrossRef]
  • H. J. Tindwa, and B. R. Singh, “Soil pollution and agriculture in sub-Saharan Africa: State of the knowledge and remediation technologies,” Frontiers in Soil Science, Vol. 2, 2023. [CrossRef]
  • X. Zhang, L. He, X. Yang, and W. Gustave, “Editorial: Soil pollution, risk assessment and remediation,” Frontiers in Environmental Science, Vol. 11, 2023. [CrossRef]
  • Zeenat, A. Elahi, D. A. Bukhari, S. Shamim, and A. Rehman, “Plastics degradation by microbes: A sustainable approach,” Journal of King Saud University – Science, Vol. 33(6), Article 101538, 2021. [CrossRef]
  • B. Sushmitha, K. Vanitha, and B. Rangaswamy, “Bioplastics–a review,” International Journal of Modern Trends in Engineering and Research, Vol. 3(4), pp. 411-413, 2016.
  • R. Geyer, J. R. Jambeck, and K. L. Law, “Production, use, and fate of all plastics ever made,” Science Advances, Vol. 3(7), Article e1700782, 2017. [CrossRef]
  • C. J. Rhodes, “Plastic pollution and potential solutions,” Science Progress, Vol. 101(3), pp. 207-260, 2018. [CrossRef]
  • A. L. Andrady, and M. A. Neal, “Applications and societal benefits of plastics,” Philosophical transactions of the Royal Society of London Series B, Biological Sciences, Vol. 364(1526), pp. 1977-1984, 2009. [CrossRef]
  • Y. Chen, A. K. Awasthi, F. Wei, Q. Tan, and J. Li, “Single-use plastics: Production, usage, disposal, and adverse impacts,” Science of The Total Environment, Vol. 752, Article141772, 2021. [CrossRef]
  • B. Li, J. Liu, B. Yu, and X. Zheng, “The environmental impact of plastic grocery bags and their alternatives,” IOP Conference Series: Earth and Environmental Science, Vol. 1011(1), Article 012050, 2022. [CrossRef]
  • N. Rustagi, S. K. Pradhan, and R. Singh, “Public health impact of plastics: An overview,” Indian Journal of Occupational and Environmental Medicine, Vol. 15(3), pp. 100-103, 2011. [CrossRef]
  • Y. Lee, and J. Cho, “Health effects of microplastic exposures: Current issues and perspectives in South Korea,” Yonsei Medical Journal Vol. 64(5), pp. 301-308, 2023. [CrossRef]
  • S. Ghosh, J. K. Sinha, S. Ghosh, K. Vashisth, S. Han, R. Bhaskar, “Microplastics as an emerging threat to the global environment and human health,” Sustainability, Vol. 15(14), Article 10821, 2023. [CrossRef]
  • Z. Akdogan, and B. Guven, “Microplastics in the environment: A critical review of current understanding and identification of future research needs,” Environmental Pollution, Vol. 254, Article 113011, 2019. [CrossRef]
  • Y. Li, L. Tao, Q. Wang, F. Wang, G. Li, and M. Song, “Potential health impact of microplastics: A review of environmental distribution, human exposure, and toxic effects,” Environment & Health, Vol. 1(4), pp. 249-257, 2023. [CrossRef]
  • S. Singh, B. Sharma, S. S. Kanwar, and A. Kumar, “Lead phytochemicals for anticancer drug development,” Frontiers in Plant Science Vol. 7, Article 1667, 2016. [CrossRef]
  • E. Baumann, “Ueber einige Vinylverbindungen,” Universität Tübingen, 1872. [CrossRef]
  • H. Von Pechmann, and L. Frobenius, “Ber. deutsch, ehem,” Ges, Vol. 31 Article 2643, 1898. [CrossRef]
  • P. J. Liu, M. Saleh, E. Pot, B. Goodrich, R. Sepassi, L. Kaiser, and N. Shazeer, “Generating wikipedia by summarizing long sequences,” arXiv preprint arXiv:1801.10198, 2018.
  • R. Kumar, A. Verma, A. Shome, R. Sinha, S. Sinha, P. K. Jha, … and P. V. Vara Prasad, “Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions,” Sustainability Vol. 13(17), Article 9963, 2021. [CrossRef]
  • L. Lebreton, and A. Andrady, “Future scenarios of global plastic waste generation and disposal,” Palgrave Communications, Vol. 5(1), Article 6, 2019. [CrossRef]
  • L. Wang, G. Nabi, L. Yin, Y. Wang, S. Li, Z. Hao, and D. Li, “Birds and plastic pollution: recent advances,” Avian Research, Vol. 12(1), Article 59, 2021. [CrossRef]
  • C. Wilcox, E. Van Sebille, and B. D. Hardesty, “Threat of plastic pollution to seabirds is global, pervasive, and increasing,” Proceedings of the National Academy of Sciences, Vol. 112(38), pp. 11899-11904, 2015. [CrossRef]
  • C. M. Rochman, “The Complex Mixture, Fate and Toxicity of Chemicals Associated with Plastic Debris in the Marine Environment,” in: M. Bergmann, L. Gutow, M. Klages (Eds.), Marine Anthropogenic Litter, Springer International Publishing, Cham, pp. 117-140, 2015. [CrossRef]
  • D. K. Barnes, F. Galgani, R. C. Thompson, and M. Barlaz, “Accumulation and fragmentation of plastic debris in global environments,” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, Vol. 364(1526), pp. 1985-1998, 2009. [CrossRef]
  • A. L. Andrady, “Microplastics in the marine environment,” Marine Pollution Bulletin, Vol. 62(8), pp. 1596-1605, 2011. [CrossRef]
  • R. Verma, V. Shankarappa, M. Papireddy, and A. N. S. Gowda, “Toxic pollutants from plastic waste- a review,” Procedia Environmental Sciences, Vol. 35, pp. 701-708, 2016. [CrossRef]
  • P. Stegmann, V. Daioglou, M. Londo, D. P. van Vuuren, and M. Junginger, “Plastic futures and their CO2 emissions,” Nature, Vol. 612(7939), pp. 272-276, 2022. [CrossRef]
  • N. Rajendran, S. Puppala, R. Sneha, and R. Angeeleena, “Seaweeds can be a new source for bioplastics,” Journal of Pharmacy Research, Vol. 5(3), pp. 1476-1479, 2012.
  • A. Mohanty, M. Misra, L. Drzal, S. Selke, B. Harte, and G. Hinrichsen, “Natural fibers, biopolymers, and biocomposites,” in: M. M. Amar K. Mohanty0, Lawrence T. Drzal (Ed.), CRC Press, Boca Raton, pp. 896, 2005. [CrossRef]
  • J. A. Brydson, 1 - The Historical Development of Plastics Materials, in: J. A. Brydson (Ed.), Plastics Materials (Seventh Edition), Butterworth-Heinemann, Oxford, pp. 1-18, 1999. [CrossRef]
  • S. Suzuki, and Y. Ikada, “Medical applications,” Poly(Lactic Acid), pp. 443-456, 2010. [CrossRef]
  • N. D. Bikiaris, I. Koumentakou, C. Samiotaki, D. Meimaroglou, D. Varytimidou, A. Karatza, … , and G. Z. Papageorgiou, “Recent advances in the investigation of poly(lactic acid) (PLA) Nanocomposites: Incorporation of various nanofillers and their properties and applications,” Polymers, Vol. 15(5), Article 1196, 2023. [CrossRef]
  • J.-G. Rosenboom, R. Langer, and G. Traverso, “Bioplastics for a circular economy,” Nature Reviews Materials, Vol. 7(2), pp. 117-137, 2022. [CrossRef]
  • J. H. Song, R. J. Murphy, R. Narayan, and G. B. Davies, “Biodegradable and compostable alternatives to conventional plastics,” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, Vol. 364(1526), pp. 2127-2139, 2009. [CrossRef]
  • T. Palmeiro-Sánchez, V. O’Flaherty, and P. N. L. Lens, “Polyhydroxyalkanoate bio-production and its rise as biomaterial of the future,” Journal of Biotechnology, Vol. 348, pp. 10-25, 2022. [CrossRef]
  • F. A. Lothfy, M. F. Haron, and H. A. Rafaie, “Fabrication and characterization of jackfruit seed powder and polyvinyl alcohol blend as biodegradable plastic,” Journal Polymer Science Technology, Vol. 3(2), pp. 1-5, 2018.
  • A. Mohapatra, S. Prasad, and H. Sharma, “Bioplastics-utilization of waste banana peels for synthesis of polymeric films,” [Master thesis], University of Mumbai, 2015.
  • G. Goswami, M. G. Goswami, and P. Purohit, “Bioplastics from organic waste,” International Journal of Engineering Research and Technology, Vol. 3(23), pp. 1-3, 2015.
  • N. N. Zulkafli, “Production of bioplastic from agricultural waste,” UMP, 2014.
  • I. S. Sidek, S. F. S. Draman, S. R. S. Abdullah, and N. Anuar, “Current development on bioplastics and its future prospects: an introductory review,” INWASCON Technology Magazine, Vol. 1, pp. 03-08, 2019. [CrossRef]
  • A. Cifriadi, T. Panji, N. A. Wibowo, and K. Syamsu, “Bioplastic production from cellulose of oil palm empty fruit bunch,” IOP Conference Series: Earth and Environmental Science, IOP Publishing, Vol. 2017, Article 012011, 2017. [CrossRef]
  • K. Khosravi-Darani, and D. Bucci, “Application of poly (hydroxyalkanoate) in food packaging: Improvements by nanotechnology,” Chemical and Biochemical Engineering Quarterly, Vol. 29(2), pp. 275-285, 2015. [CrossRef]
  • V. S. Keziah, R. Gayathri, and V. V. Priya, “Biodegradable plastic production from corn starch,” Drug Invention Today, Vol. 10(7), pp. 1315-1317, 2018.
  • M. B. Agustin, B. Ahmmad, S. M. M. Alonzo, and F. M. Patriana, “Bioplastic based on starch and cellulose nanocrystals from rice straw,” Journal of Reinforced Plastics and Composites, Vol. 33(24), pp. 2205-2213, 2014. [CrossRef]
  • M. Delgado, M. Felix, and C. Bengoechea, “Development of bioplastic materials: From rapeseed oil industry by products to added-value biodegradable biocomposite materials,” Industrial Crops and Products, Vol. 125, pp. 401-407, 2018. [CrossRef]
  • N. A. Faris, N. Z. Noriman, S. T. Sam, C. M. Ruzaidi, M. F. Omar, and A. W. M. Kahar, “Current research in biodegradable plastics,” Applied Mechanics and Materials, Vol. 679, pp. 273-280, 2014. [CrossRef]
  • I. M. Shamsuddin, J. A. Jafar, A. S. A. Shawai, S. Yusuf, M. Lateefah, and I. Aminu, “Bioplastics as better alternative to petroplastics and their role in national sustainability: A review,” Advances in Bioscience and Bioengineeringat, Vol. 5(4), Article 63, 2017. [CrossRef]
  • N. Jabeen, I. Majid, and G. A. Nayik, “Bioplastics and food packaging: A review,” Cogent Food & Agriculture, Vol. 1(1), Article 1117749, 2015. [CrossRef]
  • W. Ali, N. Zaki, and S. Obiad, “Production of bioplastic by bacteria isolated from local soil and organic wastes,” Current Research in Biotechnology, Vol. 5, pp. 1012-1017, 2017.
  • S. Pradhan, “Optimization and characterization of bioplastic produced,” Bacillus cereus SE1, 2014.
  • S. K. Das, A. Sathish, and J. Stanley, “Production of biofuel and bioplastic from Chlorella pyrenoidosa,” Materials Today: Proceedings, Vol. 5(8), pp. 16774-16781, 2018. [CrossRef]
  • B. Momani, “Assessment of the impacts of bioplastics: energy usage, fossil fuel usage, pollution, health effects, effects on the food supply, and economic effects compared to petroleum based plastics,” An Interactive Qualifying Project Report. Worcester Polytechnic Institute, 2009.
  • S. Khan, Isolation Of Extracellular Proteins From Ophiostoma Ulmi And Their Effect On Tensile Properties Of Thermoplastic Starch, University of Toronto, 2010.
  • I. E. Napper, and R. C. Thompson, “Environmental deterioration of biodegradable, oxo-biodegradable, compostable, and conventional plastic carrier bags in the sea, soil, and open-air over a 3-year period,” Environmental Science & Technology, Vol. 53(9), pp. 4775-4783, 2019. [CrossRef]
  • S. M. Emadian, T. T. Onay, and B. Demirel, “Biodegradation of bioplastics in natural environments,” Waste Management, Vol. 59, pp. 526-536, 2017. [CrossRef]
  • M. M. Abe, J. R. Martins, and P. B. Sanvezzo, “Advantages and disadvantages of bioplastics production from starch and lignocellulosic components,” Polymers, Vol. 13(15), pp. 2484-2509, 2021. [CrossRef]
  • J. Xu, and Y. Li, "Wheat gluten–based coatings and films: Preparation, properties, and applications," Journal of Food Science, Vol. 88(2), pp. 582-594, 2023. [CrossRef]
  • R. Auras, B. Harte, and S. Selke, “An overview of polylactides as packaging materials,” Macromolecular Bioscience, Vol. 4(9), pp. 835-864, 2004. [CrossRef]
  • T. N. Tran, and B. T. Mai, “Transparent bioplastic derived from CO(2)-based polymer functionalized with oregano waste extract toward active food packaging,” ACS Applied Materials & Interfaces, Vol. 12(41), pp. 46667-46677, 2020. [CrossRef]
  • J. Gonzalez-Gutierrez, P. Partal, M. Garcia-Morales, and C. Gallegos, “Development of highly-transparent protein/starch-based bioplastics,” Bioresource Technology, Vol. 101(6), pp. 2007-2013, 2010. [CrossRef]
  • A. Jayakumar, S. Radoor, S. Siengchin, G. H. Shin, and J. T. Kim, “Recent progress of bioplastics in their properties, standards, certifications and regulations: A review,” Science of The Total Environment, Vol. 878, Article 163156, 2023. [CrossRef]
  • T. Kaneko, S. Tateyam, M. Okajima, S. Hojoon, and N. Takaya, “Ultrahigh heat-resistant, transparent bioplastics from exotic amino acid,” Materials Today: Proceedings, Vol. 3, pp. S21-S29, 2016. [CrossRef]
  • G. V. Blancia, “The potential of mango starch and snake plant fibers as bio-plastic,” Asian Journal of Plant Science and Research, Vol. 11(05), pp. 171-175, 2021.
  • M. M. Burrell, “Starch: the need for improved quality or quantity—an overview,” Journal of Experimental Botany, Vol. 54(382), pp. 451-456, 2003. [CrossRef]
  • M. K. Marichelvam, M. Jawaid, and M. Asim, “Corn and rice starch-based bio-plastics as alternative packaging materials,” Fibers, Vol. 7(4), Article 32, 2019. [CrossRef]
  • C. Lee, and I. D. Y. Sieng, “A basic characterisation study of bioplastics via gelatinization of corn starch,” Journal of Applied Science & Process Engineering Vol. 8 pp. 820-833, 2021. [CrossRef]
  • R. F. Santana, R. C. F. Bonomo, O. R. R. Gandolfi, L. B. Rodrigues, L. S. Santos, A. C. Dos Santos Pires, C. P. de Oliveira, R. da Costa Ilhéu Fontan, and C. M. Veloso, “Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol,” Journal of Food Science and Technology Vol. 55(1), pp. 278-286, 2018. [CrossRef]
  • F. Xie, L. Yu, B. Su, P. Liu, J. Wang, H. Liu, and L. Chen, “Rheological properties of starches with different amylose/amylopectin ratios,” Journal of Cereal Science, Vol. 49(3), pp. 371-377, 2009. [CrossRef]
  • S. Agarwal, “Major factors affecting the characteristics of starch based biopolymer films,” European Polymer Journal, Vol. 160, Article 110788, 2021. [CrossRef]
  • R. Gadhave, A. Das, P. Mahanwar, and P. Gadekar, “Starch based bio-plastics: The future of sustainable packaging,” Open Journal of Polymer Chemistry, Vol. 08, pp. 21-33, 2018. [CrossRef]
  • P. Kuz, and M. Ates, “Starch-based bioplastic materials for packaging industry,” Journal of Sustainable Construction Materials and Technologies, Vol. 5, pp. 399-406, 2020. [CrossRef]
  • H. Onyeaka, K. Obileke, G. Makaka, and N. Nwokolo, “Current research and applications of starch-based biodegradable films for food packaging,” Polymers, Vol. 14(6), Article 16, 2022. [CrossRef]
  • M. M. Abe, J. R. Martins, P. B. Sanvezzo, M. Brienzo, P. Halley, V. R. Botaro, J. V. Macedo, and M. C. Branciforti, “Advantages and disadvantages of bioplastics production from starch and lignocellulosic components,” Polymers, Vol. 13(15), 2021. [CrossRef]
  • S. S. Ali, E. A. Abdelkarim, T. Elsamahy, R. Al-Tohamy, F. Li, M. Kornaros, …, and J. Sun, “Bioplastic production in terms of life cycle assessment: A state-of-the-art review,” Environmental Science and Ecotechnology, Vol. 15, Article 100254, 2023. [CrossRef]
  • Isroi, A. Cifriadi, T. Panji, N. A. Wibowo, and K. Syamsu, “Bioplastic production from cellulose of oil palm empty fruit bunch,” IOP Conference Series: Earth and Environmental Science, Vol. 65(1), Article 012011, 2017. [CrossRef]
  • S. Steven, A. N. Fauza, Y. Mardiyati, S. P. Santosa, and S. M. Shoimah, “Facile preparation of cellulose bioplastic from cladophora sp. algae via hydrogel method,” Polymers, Vol. 14(21), Article 4699, 2022. [CrossRef]
  • U. Kong, N. F. Mohammad Rawi, and G. S. Tay, “The potential applications of reinforced bioplastics in various industries: A review,” Polymers, Vol. 15(10), Article 2399, 2023. [CrossRef]
  • Y. Kuang, C. Chen, G. Pastel, Y. Li, J. Song, R. Mi, …, and L. Hu, “Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices,” Advanced Energy Materials, Vol. 8(33), Article 1802398, 2018. [CrossRef]
  • N. M. Nurazzi, M. A. Jenol, S. H. Kamarudin, H. A. Aisyah, L. C. Hao, S. M. Yusuff, …, and A. Norli, “19 - Nanocellulose composites in the automotive industry,” in: S. M. Sapuan, M. N. F. Norrrahim, R. A. Ilyas, C. Soutis (Eds.), Industrial Applications of Nanocellulose and Its Nanocomposites, Woodhead Publishing, pp. 439-467, 2022. [CrossRef]
  • H. Chen, J. Wang, Y. Cheng, C. Wang, H. Liu, H. Bian, …, and W. Han, “Application of protein-based films and coatings for food packaging: A review,” Polymers, Vol. 11(12), 2019. [CrossRef]
  • S. S. Purewal, A. Kaur, S. P. Bangar, P. Singh, and H. Singh, “Protein-based films and coatings: An innovative approach,” Coatings, Vol. 14(1), Article 32, 2024. [CrossRef]
  • J. Yu, S. Xu, B. Liu, H. Wang, F. Qiao, X. Ren, and Q. Wei, “PLA bioplastic production: From monomer to the polymer,” European Polymer Journal, Vol. 193, Article 112076, 2023. [CrossRef]
  • J. Prendiz, J. Vega-Baudrit, and M. Mena, “Polylactic acid (PLA) as a bioplastic and its possible applications in the food industry,” Food Science and Nutrition, Vol. 5, 2019. [CrossRef]
  • J. Lu, R. C. Tappel, and C. T. Nomura, “Mini-Review: Biosynthesis of Poly(hydroxyalkanoates),” Polymer Reviews, Vol. 49(3), pp. 226-248, 2009. [CrossRef]
  • K. Bhubalan, W.-H. Lee, and K. Sudesh, “Polyhydroxyalkanoate, biodegradable polymers in clinical use and clinical development, Wiley, pp. 247-315, 2011. [CrossRef]
  • V. Siracusa, and I. Blanco, “Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and bio-poly(ethylene terephthalate) (Bio-PET): Recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications,” Polymers, Vol. 12(8), 2020. [CrossRef]
  • K. Kaewmahit, N. Ruengrit, C. Deetuam, and P. Charoeythornkhajhornchai, “Comparison between Bio-PET and PET for food container,” Journal of Polymer Science and Engineering Vol. 6, Article 3040, 2023. [CrossRef]
  • C. Aversa, M. Barletta, M. Puopolo, and S. Vesco, “Cast extrusion of low gas permeability bioplastic sheets in PLA/PBS and PLA/PHB binary blends,” Polymer-Plastics Technology and Materials, Vol. 59(3), pp. 231-240, 2020. [CrossRef]
  • L. Aliotta, M. Seggiani, P. Cinelli, V. Gigante, A. Lazzeri, "A Brief Review of Poly (Butylene Succinate) (PBS) and Its Main Copolymers: Synthesis, blends, composites, biodegradability, and applications,” Polymers, Vol. 14(4), 2022. [CrossRef]
  • T. Anders, H. Keul, and M. Möller, “Synthesis and characterization of polyhydroxyurethanes prepared from difunctional six-membered ring carbonates,” Designed Monomers and Polymers, Vol. 14(6), pp. 593-608, 2011. [CrossRef]
  • C. Mokhtari, F. Malek, S. Halila, N. Belgacem, and R. Khiari, “New biobased polyurethane materials from modified vegetable oil,” Journal of Renewable Materials, Vol. 9, pp. 1213-1223, 2021. [CrossRef]
  • C.-H. Tsou, H.-T. Lee, H.-A. Tsai, H.-J. Cheng, and M.-C. Suen, “Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2,6-pyridinedimethanol as a chain extender,” Polymer Degradation and Stability, Vol. 98, pp. 643–650, 2013. [CrossRef]
  • F. Xie, T. Zhang, P. Bryant, V. Kurusingal, J. M. Colwell, and B. Laycock, “Degradation and stabilization of polyurethane elastomers,” Progress in Polymer Science, Vol. 90, pp. 211-268, 2019. [CrossRef]
  • M. Adnan, A. J. Siddiqui, S. A. Ashraf, M. Snoussi, R. Badraoui, M. Alreshidi, ..., and M. Patel, “Polyhydroxybutyrate (PHB)-based biodegradable polymer from agromyces indicus: Enhanced production, characterization, and optimization,” Polymers, Vol. 14(19), Article 3982, 2022. [CrossRef]
  • A. Santos, L. Dalla Valentina, A. Schulz, and M. Tomaz, “From obtaining to degradation of PHB:Material properties. part I,” Ingeniería y Ciencia, Vol. 13(26), pp. 269-298, 2017. [CrossRef]
  • M. Shah, S. Rajhans, H. A. Pandya, and A. U. Mankad, “Bioplastic for future: A review then and now,” World Journal of Advanced Research and Reviews, Vol. 9(2), pp. 056-067, 2021. [CrossRef]
  • C. Ghorpade, S. Shetty, and K. Murthy, “Bioplastics production and applications: A mini review,” International Journal for Scientific Research & Development, Vol. 19(2), pp. 229-238, 2022.
  • G. Wadiye, and J. Dalmia, “Review of Types and Applications of Bioplastics,” International Advanced Research Journal in Science, Engineering and Technology, Vol. 7(6), pp. 55-59, 2020.
  • L. Shao, Y. Xi, and Y. Weng, “Recent advances in PLA-based antibacterial food packaging and its applications,” Molecules (Basel, Switzerland), Vol. 27, Article 18, 2022. [CrossRef]
  • T. A. Swetha, A. Bora, K. Mohanrasu, P. Balaji, R. Raja, K. Ponnuchamy, G. Muthusamy, and A. Arun, “A comprehensive review on polylactic acid (PLA) – Synthesis, processing and application in food packaging,” International Journal of Biological Macromolecules, Vol. 234, Article 123715, 2023. [CrossRef]
  • S. De Luca, D. Milanese, D. Gallichi-Nottiani, A. Cavazza, and C. Sciancalepore, “Poly(lactic acid) and its blends for packaging application: A review,” Clean Technologies, Vol. 5(4), pp. 1304-1343, 2023. [CrossRef]
  • A. V. Samrot, S. K. Samanvitha, N. Shobana, E. R. Renitta, and P. Senthilkumar, “The synthesis, characterization and applications of polyhydroxyalkanoates (PHAs) and PHA-Based nanoparticles", Polymers Vol. 13(19), 2021. [CrossRef]
  • F. Masood, “Chapter 8 - Polyhydroxyalkanoates in the Food Packaging Industry,” in: A. E. Oprea, A. M. Grumezescu (Eds.), Nanotechnology Applications in Food, Academic Press, pp. 153-177, 2017. [CrossRef]
  • S. A. Acharjee, P. Bharali, B. Gogoi, V. Sorhie, B. Walling, and Alemtoshi, “PHA-based bioplastic: A potential alternative to address microplastic pollution,” Water, Air, and Soil Pollution, Vol. 234 (1), Article 21, 2023. [CrossRef]
  • M. Barletta, C. Aversa, M. Ayyoob, A. Gisario, K. Hamad, M. Mehrpouya, and H. Vahabi, “Poly(butylene succinate) (PBS): Materials, processing, and industrial applications,” Progress in Polymer Science, Vol. 132, Article 101579, 2022. [CrossRef]
  • A. Mohanty, M. Misra, and G. Hinrichsen, “Biofibres, biodegradable polymers and biocomposites: An overview,” Macromolecular Materials and Engineering, Vol. 276-277, pp. 1-24, 2000. [CrossRef]
  • F. S. Fattahi, A. Khoddami, and O. Avinc, “Sustainable, Renewable, and Biodegradable Poly(Lactic Acid) Fibers and Their Latest Developments in the Last Decade,” in: S. S. Muthu, M. A. Gardetti (Eds.), Sustainability in the Textile and Apparel Industries: Sourcing Synthetic and Novel Alternative Raw Materials, Springer International Publishing, Cham, pp. 173-194, 2020. [CrossRef]
  • L. Yu, S. Petinakis, K. Dean, A. Bilyk, and D. Wu, “Green polymeric blends and composites from renewable resources,” Macromolecular Symposia, Vol. 249-250(1), pp. 535-539, 2007. [CrossRef]
  • Z. Mansoor, F. Tchuenbou-Magaia, M. Kowalczuk, G. Adamus, G. Manning, M. Parati, I. Radecka, and H. Khan, “Polymers use as mulch films in agriculture—a review of history, problems and current trends,” Polymers, Vol. 14(23), Article 5062, 2022. [CrossRef]
  • M. Faizan, H. Nadeem, A. Arif, and W. Zaheer, “Bioplastics from biopolymers: An eco-friendly and sustainable solution of plastic pollution,” Polymer Science, Series C, Vol. 63(1), pp. 47-63, 2021. [CrossRef]
  • H. Pirasteh-Anosheh, and S. Hashemi, “Priming, a promising practical approach to improve seed germination and plant growth in saline conditions,” Asian Journal of Agriculture and Food Sciences, Vol. 8, pp. 6-9, 2020. [CrossRef]
  • V. DeStefano, S. Khan, and A. Tabada, “Applications of PLA in modern medicine,” Engineered Regeneration, Vol. 1, pp. 76-87, 2020. [CrossRef]
  • V. Singh, T. Marimuthu, M. M. Makatini, and Y. E. Choonara, “Biopolymer-based wound dressings with biochemical cues for cell-instructive wound repair,” Polymers, Vol. 14(24), Article 5371, 2022. [CrossRef]
  • R. Masaeli, S. J. K. T, R. Dinarvand, M. Tahriri, V. Rakhshan, and M. Esfandyari-Manesh, “Preparation, characterization and evaluation of drug release properties of simvastatin-loaded plga microspheres,” Iranian Journal of Pharmaceutical Research, Vol. 15(Suppl), pp. 205-211, 2016.
  • P. Calvo, C. Remuñan-López, J. L. Vila-Jato, and M. J. Alonso, “Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines,” Pharmaceutical Research, Vol. 14(10), pp. 1431-1436, 1997. [CrossRef]
  • M. Saravanan, K. Bhaskar, G. Srinivasa Rao, and M. D. Dhanaraju, “Ibuprofen-loaded ethylcellulose/polystyrene microspheres: an approach to get prolonged drug release with reduced burst effect and low ethylcellulose content,” Journal of Microencapsulation, Vol. 20(3), pp. 289-302, 2003. [CrossRef]
  • J. Li, X. Zhang, A. Udduttula, Z. S. Fan, J. H. Chen, A. R. Sun, and P. Zhang, “Microbial-derived polyhydroxyalkanoate-based scaffolds for bone tissue engineering: Biosynthesis, properties, and perspectives,” Frontiers in Bioengineering and Biotechnology, Vol. 9, Article 763031, 2021. [CrossRef]
  • É. Bozó, H. Ervasti, N. Halonen, S. H. H. Shokouh, J. Tolvanen, O. Pitkänen, … and K. Kordas, “Bioplastics and Carbon-Based Sustainable Materials, Components, and Devices: Toward Green Electronics,” ACS Applied Materials & Interfaces, Vol. 13(41), pp. 49301-49312, 2021. [CrossRef]
  • M. N. Andanje, J. W. Mwangi, B. R. Mose, S. Carrara, “Biocompatible and biodegradable 3D printing from bioplastics: A review,” Polymers, Vol. 15(10), Article 2355, 2023. [CrossRef]
  • T. M. Joseph, A. Kallingal, A. M. Suresh, D. K. Mahapatra, M. S. Hasanin, J. Haponiuk, and S. Thomas, “3D printing of polylactic acid: recent advances and opportunities,” The International Journal of Advanced Manufacturing Technology, Vol. 125(3), pp. 1015-1035, 2023. [CrossRef]
  • M. K. Huda, and I. Widiastuti, “Natural fiber reinforced polymer in automotive application: A systematic literature review,” Journal of Physics: Conference Series, Vol. 1808(1), Article 012015, 2021. [CrossRef]
  • H. Vieyra, J. M. Molina-Romero, J. de Dios Calderón-Nájera, and A. Santana-Díaz, “Engineering, recyclable, and biodegradable plastics in the automotive industry: A review,” Polymers Vol. 14(16), Article 3412, 2022. [CrossRef]
Toplam 162 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Su Kalitesi ve Su Kirliliği, Çevresel ve Sürdürülebilir Süreçler, Hava Kirliliği Süreçleri ve Hava Kalitesi Ölçümü, Çevre Sorunları
Bölüm Review
Yazarlar

Mussarat Jabeen 0000-0002-0818-0662

Kainat Tarıq 0009-0001-9330-3865

Syed Ubaid Hussain 0000-0002-6578-581X

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 12 Nisan 2024
Kabul Tarihi 16 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 4

Kaynak Göster

APA Jabeen, M., Tarıq, K., & Hussain, S. U. (2024). Bioplastic an alternative to plastic in modern world: A systemized review. Environmental Research and Technology, 7(4), 614-625. https://doi.org/10.35208/ert.1467590
AMA Jabeen M, Tarıq K, Hussain SU. Bioplastic an alternative to plastic in modern world: A systemized review. ERT. Aralık 2024;7(4):614-625. doi:10.35208/ert.1467590
Chicago Jabeen, Mussarat, Kainat Tarıq, ve Syed Ubaid Hussain. “Bioplastic an Alternative to Plastic in Modern World: A Systemized Review”. Environmental Research and Technology 7, sy. 4 (Aralık 2024): 614-25. https://doi.org/10.35208/ert.1467590.
EndNote Jabeen M, Tarıq K, Hussain SU (01 Aralık 2024) Bioplastic an alternative to plastic in modern world: A systemized review. Environmental Research and Technology 7 4 614–625.
IEEE M. Jabeen, K. Tarıq, ve S. U. Hussain, “Bioplastic an alternative to plastic in modern world: A systemized review”, ERT, c. 7, sy. 4, ss. 614–625, 2024, doi: 10.35208/ert.1467590.
ISNAD Jabeen, Mussarat vd. “Bioplastic an Alternative to Plastic in Modern World: A Systemized Review”. Environmental Research and Technology 7/4 (Aralık 2024), 614-625. https://doi.org/10.35208/ert.1467590.
JAMA Jabeen M, Tarıq K, Hussain SU. Bioplastic an alternative to plastic in modern world: A systemized review. ERT. 2024;7:614–625.
MLA Jabeen, Mussarat vd. “Bioplastic an Alternative to Plastic in Modern World: A Systemized Review”. Environmental Research and Technology, c. 7, sy. 4, 2024, ss. 614-25, doi:10.35208/ert.1467590.
Vancouver Jabeen M, Tarıq K, Hussain SU. Bioplastic an alternative to plastic in modern world: A systemized review. ERT. 2024;7(4):614-25.