Araştırma Makalesi
BibTex RIS Kaynak Göster

8-Boyutlu Oktoniyon Uzayında Reel Oktoniyonları Kullanarak Oktoniyonik Rektifiyan, Oskülatör ve Normal Eğrilerin Özelliklerinin Belirlenmesi

Yıl 2018, Cilt: 11 Sayı: 1, 31 - 46, 24.04.2018

Öz

Bu çalışmada, 8-boyutlu oktoniyon uzayda, reel oktoniyonlarla, oktoniyonik rektifiyan, oskülatör ve normal

eğrilerin özelliklerinin nasıl belirlenebileceği konusu üzerine odaklanılmıştır. Öncelikle, oktoniyonlar cebirleri

ve 8-boyutlu oktoniyon uzayında oktoniyonik eğriler hakkında bazı bilgiler verilmiştir. Daha sonra 8-boyutlu

oktoniyon uzayda oktoniyonik rektifiyan, oskülatör ve normal eğrileri tanımlanmıştır. Son olarak, oktoniyonik

rektifiyan, oskülatör ve normal eğrilerin bazı karakterizasyonları elde edilmiştir.

Kaynakça

  • Baez, JC. 2001. The Octonions, Bull Am Math Soc, 39, 145-205.
  • Bektaş, Ö., Gürses (Bayrak), N., Yüce, S. 2016. Quaternionic Osculating Curves in Euclidean and Semi-Euclidean Space, Journal of Dynamical Systems and Geometric Theories, 14(1), 65-84.
  • Bektaş, Ö., Yüce, S. 2014. Real Variable Serret Frenet Formulae of an Octonion Valued Function (Octonionic Curves). Colloquium on Combinatorics, 7-8 November 2014, Ilmenau
  • Bharathi, K., Nagaraj, M. 1987. Quaternion Valued Function of a Real Variable Serret-Frenet Formulae. Indian J Pure Appl Math, 18, 07-511.
  • Cambie, S., Goemans, W., Van Den Bussche, I. 2016. Rectifying Curves in the n-Dimensional Euclidean Space, Turk J Math, 40, 210-223.
  • Chen, BY. 2003. When Does the Position Vector of a Space Curve Always Lie in its Rectifying Plane?, Am Math Mon, 110, 147-152.
  • Chen, BY., Dillen, F. 2005. Rectifying Curves as Centrodes and Extremal Curves. Bull Inst Math Acad Sin, 33, 77-90.
  • Dray, T., Manogue, C., (2015). The Geometry of Octonions, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ.
  • Hamilton, WR. (1969). Elements of Quaternions, Chelsea Publications, New York, USA.
  • İlarslan, K., Nesovic, E. Petrovic-Torgasev, M. 2003. Some Characterizations of Rectifying Curves in the Minkowski 3-Space, Novi Sad J Math, 33, 23-32.
  • İlarslan, K., Nesovic, E. 2007. On Rectifying Curves as Centrodes and Extremal Curves in Minkowski 3-Space, Novi Sad J Math, 37, 53-64.
  • İlarslan, K., Nesovic, E. 2008a. Some Characterizations of Rectifying Curves in the Euclidean space E^4, Turk J Math, 32, 21-30.
  • İlarslan, K., Nesovic, E. 2008b. Some Characterizations of Osculating Curves in the Euclidean Spaces, Demonstratio Mathematica, XLI, 4, 931-939.
  • Güngör, MA., Tosun, M. 2011. Some Characterizations of Quaternionic Rectifying Curves, Differential Geometry, Dynamical Systems, 13, 102-113.
  • Ward, JP. (1997). Quaternions and Cayley Numbers Algebra and Applications, Kluwer Academic Publishers, London.
  • Yıldız, Ö.G., Özkaldı Karakuş, S. 2013. On the Quaternionic Normal Curves in the Euclidean Space, 2nd International Eurasian Conference on Mathematical Sciences and Applications (IECMSA-2013), 26-29Ağustos 2013, Bosna Hersek.
  • Yıldız, Ö.G., Özkaldı Karakuş, S. 2016. On the Quaternionic Normal Curves in the Semi Euclidean Space , International Journal of Mathematical Combinatoric, 3, 68-76.

Determination of Properties of Octonionic Rectifying, Osculating and Normal Curves Using Real Octonions in 8-Dimensional Octonion Space

Yıl 2018, Cilt: 11 Sayı: 1, 31 - 46, 24.04.2018

Öz

In this study, we focus on the issue of how to determine properties of octonionic rectifying, osculating and

normal curves by means of real octonions in 8-dimensional octonion space. Firstly, we give some informations

about octonion algebras, and octonionic curves in 8-dimensional octonion space. After that, we define

octonionic rectifying, osculating and normal curves in 8-dimensional octonion space. Finally, we obtain some

characterizations of the octonionic rectifying, osculating and normal curves.



octonionic rectifying, osculating and normal curves in 8-dimensional octonion space. Finally, we obtain some

characterizations of the octonionic rectifying, osculating and normal curves.

Kaynakça

  • Baez, JC. 2001. The Octonions, Bull Am Math Soc, 39, 145-205.
  • Bektaş, Ö., Gürses (Bayrak), N., Yüce, S. 2016. Quaternionic Osculating Curves in Euclidean and Semi-Euclidean Space, Journal of Dynamical Systems and Geometric Theories, 14(1), 65-84.
  • Bektaş, Ö., Yüce, S. 2014. Real Variable Serret Frenet Formulae of an Octonion Valued Function (Octonionic Curves). Colloquium on Combinatorics, 7-8 November 2014, Ilmenau
  • Bharathi, K., Nagaraj, M. 1987. Quaternion Valued Function of a Real Variable Serret-Frenet Formulae. Indian J Pure Appl Math, 18, 07-511.
  • Cambie, S., Goemans, W., Van Den Bussche, I. 2016. Rectifying Curves in the n-Dimensional Euclidean Space, Turk J Math, 40, 210-223.
  • Chen, BY. 2003. When Does the Position Vector of a Space Curve Always Lie in its Rectifying Plane?, Am Math Mon, 110, 147-152.
  • Chen, BY., Dillen, F. 2005. Rectifying Curves as Centrodes and Extremal Curves. Bull Inst Math Acad Sin, 33, 77-90.
  • Dray, T., Manogue, C., (2015). The Geometry of Octonions, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ.
  • Hamilton, WR. (1969). Elements of Quaternions, Chelsea Publications, New York, USA.
  • İlarslan, K., Nesovic, E. Petrovic-Torgasev, M. 2003. Some Characterizations of Rectifying Curves in the Minkowski 3-Space, Novi Sad J Math, 33, 23-32.
  • İlarslan, K., Nesovic, E. 2007. On Rectifying Curves as Centrodes and Extremal Curves in Minkowski 3-Space, Novi Sad J Math, 37, 53-64.
  • İlarslan, K., Nesovic, E. 2008a. Some Characterizations of Rectifying Curves in the Euclidean space E^4, Turk J Math, 32, 21-30.
  • İlarslan, K., Nesovic, E. 2008b. Some Characterizations of Osculating Curves in the Euclidean Spaces, Demonstratio Mathematica, XLI, 4, 931-939.
  • Güngör, MA., Tosun, M. 2011. Some Characterizations of Quaternionic Rectifying Curves, Differential Geometry, Dynamical Systems, 13, 102-113.
  • Ward, JP. (1997). Quaternions and Cayley Numbers Algebra and Applications, Kluwer Academic Publishers, London.
  • Yıldız, Ö.G., Özkaldı Karakuş, S. 2013. On the Quaternionic Normal Curves in the Euclidean Space, 2nd International Eurasian Conference on Mathematical Sciences and Applications (IECMSA-2013), 26-29Ağustos 2013, Bosna Hersek.
  • Yıldız, Ö.G., Özkaldı Karakuş, S. 2016. On the Quaternionic Normal Curves in the Semi Euclidean Space , International Journal of Mathematical Combinatoric, 3, 68-76.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Özcan Bektaş

Salim Yüce

Yayımlanma Tarihi 24 Nisan 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 11 Sayı: 1

Kaynak Göster

APA Bektaş, Ö., & Yüce, S. (2018). 8-Boyutlu Oktoniyon Uzayında Reel Oktoniyonları Kullanarak Oktoniyonik Rektifiyan, Oskülatör ve Normal Eğrilerin Özelliklerinin Belirlenmesi. Erzincan University Journal of Science and Technology, 11(1), 31-46.