Araştırma Makalesi
BibTex RIS Kaynak Göster

Multi Response Optimization in Food Industry Using Principal Component Analysis and Response Surface Methodology

Yıl 2019, Cilt: 12 Sayı: 2, 734 - 744, 31.08.2019
https://doi.org/10.18185/erzifbed.485762

Öz

Principal component analysis reduces the
dimensionality of data containing a large set of variables to small set without
loosing the most important information in the original data set. Multiple
correlated response variables are often included in experimental studies.  Principal component analysis can be used to
generate one overall response variable that contains most of the information in
the set of response variables. After obtaining one overall response variable of
the experimental design model, response surface method can be used to
optimize  the new response variable which
is influenced by several independent variables. In this paper principal
component analysis is applied to data of bread production process which
contains correlated response variables such as phytic acid, phytate phosphor,
total phosphor. Response surface method is conducted to optimize new response
generated by principal component analysis and the optimum conditions are
obtained.

Kaynakça

  • Bayrak, H., Özkaya, B., Tekindal, M.A. 2010. “Productivity in the first degree ort he optimum point determination of factorial trials: An application”, Turkiye Klinikleri Journal of Biostatistics, 2(1), 18-27.
  • Bilgiçli, N. 2002. “Fitik Asitin Beslenme Açısından Önemi ve Fitik Asit Miktarı Düşürülmüş Gıda Üretim Metotları”, Selçuk Tarım ve Gıda Bilimleri Dergisi, 16(30), 79-83.
  • Cheryan, M. 1980. “Phytic Acid Interaction in Food System”, Critical Reviews in Food Science and Nutrition, 13(4), 297-335.
  • Derringer, G., Suich, R. 1980. “Simultaneous optimization of several response variables”, Journal of quality technology, 12(4), 214-219.
  • Díaz-García, J.A., Bashiri, M. 2014. “Multiple response optimisation: An approach from multiobjective stochastic programming”, Applied Mathematical Modelling, 38(7-8), 2015-2027.
  • Ebegil, M., Apaydın, B., Kılıç, D., Bayrak, H. 2017. “The Determination of Optimal Production of Corn Bread Using Response Surface Method and Data Envelopment Analysis”, 10th International Statistics Congress, Ankara,164.
  • Empson, K.L., Labuza, T.P., Graf, E. 1991. “Phytic Acid As a Food Antioxidant”, Journal of Food Science, 56(2), 560-563.
  • Harland, B.F., Harland, D.J. 1980. “Fermentative Reduction of Phytale in Rye, White and Whole Wheat Breads”, Cereal Chemistry, 57(3), 226-229.
  • Hair, J. F., Black, W.C., Babin, B.J., Anderson, R.E. 2009. “Multivariate Data Analysis”, Pearson Prentice Hall.
  • Khuri, A.I., Conlon, M. 1981. “Simultaneous optimization of multiple responses represented by polynomial regression functions”, Technometrics, 23(4), 363-375.
  • Kılıç, D. 2018. “Faktöriyel Denemeler İçin Yanıt Yüzeyi Metodunun Uygulanması”, Yüksek Lisans tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Kılıç, D., Bayrak, H., Özkaya, B. 2018. “Mısır Ekmeğindeki Fitik Asit Miktarını Etkileyen Faktörlerin Belirlenmesinde Yanıt Yüzey Yöntemi Yaklaşımı”, Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 44(2), 121-134.
  • Knuckles, B.E. 1988. “Effect of Phytate and Other Myoinositol Phosphate Esters on Lipase Activity”, Journal of Food Science, 53(1), 250-252.
  • Koksoy, O. 2005. “Dual response optimization: the desirability approach”, International Journal of Industrial Engineering: Theory, Applications and Practice, 12(4), 335-342.
  • Köksoy, O., Yalcinoz, T. 2006. “Mean square error criteria to multiresponse process optimization by a new genetic algorithm”, Applied Mathematics and Computation, 175(2), 1657-1674.
  • Layne, K.L. 1995. “Methods to determine optimum factor levels for multiple responses in designed experimentation”, Quality engineering, 7(4), 649-656.
  • Özkaya, B., Özkaya, H., Duman, B. 2013. “Effects of Yeast Types on Phytic Acid Content of Traditional Corn Bread”, The 2nd International Symposium on Traditional Foods From Adriatic to Caucasus, Macedonia, 234.
  • Pignatiello Jr, J.J. 1993. “Strategies for robust multiresponse quality engineering”, IIE transactions, 25(3), 5-15.
  • Sahu, J., Mohanty, C.P., Mahapatra, S.S. 2013. “A DEA approach for optimization of multiple responses in electrical discharge machining of AISI D2 steel”, Procedia Engineering, 51, 585-591.
  • Shadkam, E., Bijari M. 2015. “The Optimization of bank branches efficiency by means of response surface method and data envelopment analysis: a case of Iran”, Journal of Asian finance, Economics and Business, 2(2), 13–18.
  • Tai, C.Y., Chen, T.S., Wu, M.C. 1992. “An enhanced Taguchi method for optimizing SMT processes”, Journal of Electronics Manufacturing, 2(03), 91-100.
  • Tsai, C.W., Tong, L.I., Wang, C.H. 2010. “Optimization of Multiple Responses Using Data Envelopment Analysis and Response Surface Methodology”, Tamkang Journal of Science and Engineering, 13(2), 197-203.
  • Tong, L.I., Su, C.T. 1997. “Optimizing multi‐response problems in the Taguchi method by fuzzy multiple attribute decision making”, Quality and reliability engineering International, 13(1), 25-34.
  • Tong, L.I., Wang, C.H., Chen, C.C., Chen, C.T. 2004. “Dynamic multiple responses by ideal solution analysis”, European Journal of Operational Research, 156(2), 433-444.

Temel Bileşenler Analizi ve Yanıt Yüzey Yöntemi Kullanılarak Gıda Sektöründe Çoklu Yanıtların Optimizasyonu

Yıl 2019, Cilt: 12 Sayı: 2, 734 - 744, 31.08.2019
https://doi.org/10.18185/erzifbed.485762

Öz

Temel
bileşenler analizi büyük değişken kümesi içeren verinin boyutunu orijinal
veride bilgi kaybına yol açmadan küçük kümeye indirger. Deneysel çalışmalarda
çoklu korelasyona sahip yanıt değişkenler sıklıkla bulunmaktadır. Temel
bileşenler analizi yanıt değişkenler kümesindeki bilginin çoğunu içeren bir
genel yanıt değişken elde etmek için kullanılabilir. Genel yanıt değişken elde
edildikten sonra, birkaç bağımsız değişkenden etkilenen yanıt değişkeni
optimize etmek için yanıt yüzey yöntemi kullanılabilir. Bu çalışmada fitik
asit, fitat fosforu, toplam fosfor gibi korelasyonlu yanıt değişkenler içeren
ekmek üretim işlemi verisine temel bileşenler analizi uygulanmıştır. Temel
bileşenler analizi ile oluşturulan yeni yanıt değişkeni optimize etmek için
yanıt yüzey yöntemi uygulanmış ve en uygun koşullar elde edilmiştir.

Kaynakça

  • Bayrak, H., Özkaya, B., Tekindal, M.A. 2010. “Productivity in the first degree ort he optimum point determination of factorial trials: An application”, Turkiye Klinikleri Journal of Biostatistics, 2(1), 18-27.
  • Bilgiçli, N. 2002. “Fitik Asitin Beslenme Açısından Önemi ve Fitik Asit Miktarı Düşürülmüş Gıda Üretim Metotları”, Selçuk Tarım ve Gıda Bilimleri Dergisi, 16(30), 79-83.
  • Cheryan, M. 1980. “Phytic Acid Interaction in Food System”, Critical Reviews in Food Science and Nutrition, 13(4), 297-335.
  • Derringer, G., Suich, R. 1980. “Simultaneous optimization of several response variables”, Journal of quality technology, 12(4), 214-219.
  • Díaz-García, J.A., Bashiri, M. 2014. “Multiple response optimisation: An approach from multiobjective stochastic programming”, Applied Mathematical Modelling, 38(7-8), 2015-2027.
  • Ebegil, M., Apaydın, B., Kılıç, D., Bayrak, H. 2017. “The Determination of Optimal Production of Corn Bread Using Response Surface Method and Data Envelopment Analysis”, 10th International Statistics Congress, Ankara,164.
  • Empson, K.L., Labuza, T.P., Graf, E. 1991. “Phytic Acid As a Food Antioxidant”, Journal of Food Science, 56(2), 560-563.
  • Harland, B.F., Harland, D.J. 1980. “Fermentative Reduction of Phytale in Rye, White and Whole Wheat Breads”, Cereal Chemistry, 57(3), 226-229.
  • Hair, J. F., Black, W.C., Babin, B.J., Anderson, R.E. 2009. “Multivariate Data Analysis”, Pearson Prentice Hall.
  • Khuri, A.I., Conlon, M. 1981. “Simultaneous optimization of multiple responses represented by polynomial regression functions”, Technometrics, 23(4), 363-375.
  • Kılıç, D. 2018. “Faktöriyel Denemeler İçin Yanıt Yüzeyi Metodunun Uygulanması”, Yüksek Lisans tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Kılıç, D., Bayrak, H., Özkaya, B. 2018. “Mısır Ekmeğindeki Fitik Asit Miktarını Etkileyen Faktörlerin Belirlenmesinde Yanıt Yüzey Yöntemi Yaklaşımı”, Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 44(2), 121-134.
  • Knuckles, B.E. 1988. “Effect of Phytate and Other Myoinositol Phosphate Esters on Lipase Activity”, Journal of Food Science, 53(1), 250-252.
  • Koksoy, O. 2005. “Dual response optimization: the desirability approach”, International Journal of Industrial Engineering: Theory, Applications and Practice, 12(4), 335-342.
  • Köksoy, O., Yalcinoz, T. 2006. “Mean square error criteria to multiresponse process optimization by a new genetic algorithm”, Applied Mathematics and Computation, 175(2), 1657-1674.
  • Layne, K.L. 1995. “Methods to determine optimum factor levels for multiple responses in designed experimentation”, Quality engineering, 7(4), 649-656.
  • Özkaya, B., Özkaya, H., Duman, B. 2013. “Effects of Yeast Types on Phytic Acid Content of Traditional Corn Bread”, The 2nd International Symposium on Traditional Foods From Adriatic to Caucasus, Macedonia, 234.
  • Pignatiello Jr, J.J. 1993. “Strategies for robust multiresponse quality engineering”, IIE transactions, 25(3), 5-15.
  • Sahu, J., Mohanty, C.P., Mahapatra, S.S. 2013. “A DEA approach for optimization of multiple responses in electrical discharge machining of AISI D2 steel”, Procedia Engineering, 51, 585-591.
  • Shadkam, E., Bijari M. 2015. “The Optimization of bank branches efficiency by means of response surface method and data envelopment analysis: a case of Iran”, Journal of Asian finance, Economics and Business, 2(2), 13–18.
  • Tai, C.Y., Chen, T.S., Wu, M.C. 1992. “An enhanced Taguchi method for optimizing SMT processes”, Journal of Electronics Manufacturing, 2(03), 91-100.
  • Tsai, C.W., Tong, L.I., Wang, C.H. 2010. “Optimization of Multiple Responses Using Data Envelopment Analysis and Response Surface Methodology”, Tamkang Journal of Science and Engineering, 13(2), 197-203.
  • Tong, L.I., Su, C.T. 1997. “Optimizing multi‐response problems in the Taguchi method by fuzzy multiple attribute decision making”, Quality and reliability engineering International, 13(1), 25-34.
  • Tong, L.I., Wang, C.H., Chen, C.C., Chen, C.T. 2004. “Dynamic multiple responses by ideal solution analysis”, European Journal of Operational Research, 156(2), 433-444.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Deniz Ozonur 0000-0002-7622-1008

Duygu Kılıç 0000-0002-3972-6648

Hatice Tul Kubra Akdur 0000-0003-2144-0518

Hülya Bayrak 0000-0001-5666-4250

Yayımlanma Tarihi 31 Ağustos 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 12 Sayı: 2

Kaynak Göster

APA Ozonur, D., Kılıç, D., Akdur, H. T. K., Bayrak, H. (2019). Temel Bileşenler Analizi ve Yanıt Yüzey Yöntemi Kullanılarak Gıda Sektöründe Çoklu Yanıtların Optimizasyonu. Erzincan University Journal of Science and Technology, 12(2), 734-744. https://doi.org/10.18185/erzifbed.485762

Cited By

KESTİRİMCİ BAKIMDA MAKİNE ÖĞRENMESİ: LİTERATÜR ARAŞTIRMASI
Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi
Damla Rana DÜNDAR
https://doi.org/10.31796/ogummf.873963