Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of the Effects of Injection Timing on Engine Performance and Formation of Emission in Homogeneous Charge Compression Ignition Engines

Yıl 2019, Cilt: 12 Sayı: 3, 1217 - 1231, 31.12.2019
https://doi.org/10.18185/erzifbed.464526

Öz

Homogeneous
charge compression ignition engines are considered to be promising in studying
areas due to their low NOx and soot emissions. Particularly, it is aimed to
improve combustion by changing the injection strategies of diesel fuel. In this
study, different spray timing for a homogeneous charge compression ignition
engine was investigated
under
diesel engine conditions. Also, the AVL-FIRE numerical software was used in
this study. Further,
injection timing was examined at -150CA, -120CA,
-90CA, -60CA and -30CA before the top dead center (BTDC).
The injection was completed 5CA after TDC for all injection timings. The results showed that high temperatures, high NOx and soot emissions
were obtained at early injection timing.
Especially, lower NOx and soot emissions were obtained in the retarded
injection timings such as -90KA and -60KA.
However, in the case of late injection, CO emissions were increased.

Kaynakça

  • AVL-FIRE User Guide, 2013.
  • Coskun, G. Demir, U. Soyhan, H. S. Turkcan, A. Ozsezen A. N. and Canakci, M. 2018. “An experimental and modeling study to investigate effects of different injection parameters on a direct injection HCCI combustion fueled with ethanol–gasoline fuel blends”, Fuel , 215, 879–891.
  • Combustion Module, 2013. AVL FIRE user Manual v.2013. 2, 2013.
  • Dukowicz, J.K. 1997. Quasi-steady droplet change in the presence of convection. informal report Los Alamos Scientific Laboratory, LA7997-MS.
  • Emission Module, 2013. AVL FIRE user Manual v.2013. 2, 2013.
  • Fang, Q. Fang, J. Zhuang, J. and Huang, Z. 2012. “Influences of pilot injection and exhaust gas recirculation (EGR) on combustion and emissions in a HCCI-DI combustion engine”, Applied Thermal Engineering, 48, 97-104.
  • Jafarmadar, S. Nemati, P. and Khodaie, R. 2015. “Multidimensional modeling of the effect of Exhaust Gas Recirculation (EGR) on exergy terms in an HCCI engine fueled with a mixture of natural gas and diesel”, Energy Conversion and Management , 105, 498–508.
  • Khandal, S.V. Banapurmath, N.R. Gaitonde V.N. and Hiremath, S.S. 2017. “Paradigm shift from mechanical direct injection diesel engines to advanced injection strategies of diesel homogeneous charge compression ignition (HCCI) engines- A comprehensive review”, Renewable and Sustainable Energy Reviews, 70, 369–384.
  • Kozarac, D. Taritas, I. Vuilleumier, D. Saxena S. and Dibble, R. W. 2016. “Experimental and numerical analysis of the performance and exhaust gas emissions of a biogas/n-heptane fueled HCCI engine”, Energy, 115, 180-193.
  • Lapuerta, M. Hernandez, J.J. and Gimenez, F. 2000. “Evaluation of exhaust gas recirculation as a technique for reducing diesel engine NOx emissions”, Proc Inst Mech Eng Part D J Autom Eng, 214, 85–93.
  • Liu, A.B. Reitz, R.D. 1993. “Modeling the Effects of Drop Drag and Break-up on Fuel Sprays”. SAE 930072.
  • Mathivanan, K. Mallikarjuna J. M. and Ramesh A. 2016. “Influence of multiple fuel injection strategies on performance and combustion characteristics of a diesel fuelled HCCI engine – An experimental investigation”, Experimental Thermal and Fluid Science, 77, 337–346.
  • Naber, J.D. Reitz, R.D. 1988. “Modeling Engine Spray/Wall Impingement.” SAE-880107.
  • O'Rourke, P.J. 1989. “Statistical Properties and Numerical Implementation of a Model for Droplet Dispersion in Turbulent Gas” J. Comput. Physics 83, 1989.
  • Suzuki, H. Koike, N. Ishii H. and Odaka, M. 1997. “Exhaust purification of diesel engines by homogeneous charge with compression ignition part1: experimental investigation of combustion and exhaust emission behavior under pre-mixed homogeneous charge compression ignition method”, SAE Paper No. 970313.
  • Turkcan, A. Altinkurt, M. D. Coskun, G. and Canakci, M. 2018. “Numerical and experimental investigations of the effects of the second injection timing and alcohol-gasoline fuel blends on combustion and emissions of an HCCI-DI engine”, Fuel, 219, 50–61.
  • Yao, M.F. Zheng, Z.L. and Liu, H.F. 2009 “Progress and recent trends in homogeneous charge compression ignition (HCCI) engines”, Prog. Energ. Combust. Sci., 35, 398-437.
  • Yousefzadeh, A. and Jahanian, O. 2017. “Using detailed chemical kinetics 3D-CFD model to investigate combustion phase of a CNG-HCCI engine according to control strategy requirements”, Energy Conversion and Management , 133, 524–534.
  • Zheng, M. Reader, G.T. and Hawley, J.G. 2004. “Diesel engine exhaust gas recirculation – a review on advanced and novel concepts”. Energy Convers Manage, 45, 883–900.

Homojen Dolgulu Sıkıştırma Ateşlemeli Motorlarda Enjeksiyon Zamanlamasının Motor Performansı ve Emisyon Oluşumuna Etkilerinin İncelenmesi

Yıl 2019, Cilt: 12 Sayı: 3, 1217 - 1231, 31.12.2019
https://doi.org/10.18185/erzifbed.464526

Öz


Homojen dolgulu sıkıştırma
ateşlemeli motorlar düşük NOx ve is emisyonları sağlaması sebebiyle umut
verici çalışma alanları olarak görülmektedir. Özellikle dizel yakıtının
püskürtme stratejilerinin değiştirilmesiyle yanmanın iyileştirilmesi
hedeflenmektedir. Bu çalışma kapsamında dizel motor şartları altında homojen
dolgulu sıkıştırma ateşlemeli bir motor için krank açısına (KA) bağlı farklı
püskürtme zamanlaması araştırılmıştır. Çalışma AVL-FIRE sayısal yazılımı
kullanılarak gerçekleştirilmiştir. Enjeksiyon üst ölü noktadan (ÜÖN) önce
sırasıyla -150KA, -120KA, -90KA, -60KA ve -30KA’nda başlayan zamanlamalar
için incelenmiştir. Tüm püskürtme zamanlamaları için enjeksiyon ÜÖN’dan 5KA
sonra tamamlanmıştır. Çalışmalar sonucunda erken enjeksiyon zamanlamalarında
yüksek sıcaklıklar ve kısmen yüksek NOx ve is emisyonları elde edilmiştir.
Özellikle -90KA ve -60KA gibi geciken enjeksiyon zamanlamalarında daha düşük
NOx ve is emisyonları elde edilmiştir. Fakat enjeksiyonun daha geç yapılması
durumunda ise CO emisyonlarının arttığı gözlenmiştir.



Kaynakça

  • AVL-FIRE User Guide, 2013.
  • Coskun, G. Demir, U. Soyhan, H. S. Turkcan, A. Ozsezen A. N. and Canakci, M. 2018. “An experimental and modeling study to investigate effects of different injection parameters on a direct injection HCCI combustion fueled with ethanol–gasoline fuel blends”, Fuel , 215, 879–891.
  • Combustion Module, 2013. AVL FIRE user Manual v.2013. 2, 2013.
  • Dukowicz, J.K. 1997. Quasi-steady droplet change in the presence of convection. informal report Los Alamos Scientific Laboratory, LA7997-MS.
  • Emission Module, 2013. AVL FIRE user Manual v.2013. 2, 2013.
  • Fang, Q. Fang, J. Zhuang, J. and Huang, Z. 2012. “Influences of pilot injection and exhaust gas recirculation (EGR) on combustion and emissions in a HCCI-DI combustion engine”, Applied Thermal Engineering, 48, 97-104.
  • Jafarmadar, S. Nemati, P. and Khodaie, R. 2015. “Multidimensional modeling of the effect of Exhaust Gas Recirculation (EGR) on exergy terms in an HCCI engine fueled with a mixture of natural gas and diesel”, Energy Conversion and Management , 105, 498–508.
  • Khandal, S.V. Banapurmath, N.R. Gaitonde V.N. and Hiremath, S.S. 2017. “Paradigm shift from mechanical direct injection diesel engines to advanced injection strategies of diesel homogeneous charge compression ignition (HCCI) engines- A comprehensive review”, Renewable and Sustainable Energy Reviews, 70, 369–384.
  • Kozarac, D. Taritas, I. Vuilleumier, D. Saxena S. and Dibble, R. W. 2016. “Experimental and numerical analysis of the performance and exhaust gas emissions of a biogas/n-heptane fueled HCCI engine”, Energy, 115, 180-193.
  • Lapuerta, M. Hernandez, J.J. and Gimenez, F. 2000. “Evaluation of exhaust gas recirculation as a technique for reducing diesel engine NOx emissions”, Proc Inst Mech Eng Part D J Autom Eng, 214, 85–93.
  • Liu, A.B. Reitz, R.D. 1993. “Modeling the Effects of Drop Drag and Break-up on Fuel Sprays”. SAE 930072.
  • Mathivanan, K. Mallikarjuna J. M. and Ramesh A. 2016. “Influence of multiple fuel injection strategies on performance and combustion characteristics of a diesel fuelled HCCI engine – An experimental investigation”, Experimental Thermal and Fluid Science, 77, 337–346.
  • Naber, J.D. Reitz, R.D. 1988. “Modeling Engine Spray/Wall Impingement.” SAE-880107.
  • O'Rourke, P.J. 1989. “Statistical Properties and Numerical Implementation of a Model for Droplet Dispersion in Turbulent Gas” J. Comput. Physics 83, 1989.
  • Suzuki, H. Koike, N. Ishii H. and Odaka, M. 1997. “Exhaust purification of diesel engines by homogeneous charge with compression ignition part1: experimental investigation of combustion and exhaust emission behavior under pre-mixed homogeneous charge compression ignition method”, SAE Paper No. 970313.
  • Turkcan, A. Altinkurt, M. D. Coskun, G. and Canakci, M. 2018. “Numerical and experimental investigations of the effects of the second injection timing and alcohol-gasoline fuel blends on combustion and emissions of an HCCI-DI engine”, Fuel, 219, 50–61.
  • Yao, M.F. Zheng, Z.L. and Liu, H.F. 2009 “Progress and recent trends in homogeneous charge compression ignition (HCCI) engines”, Prog. Energ. Combust. Sci., 35, 398-437.
  • Yousefzadeh, A. and Jahanian, O. 2017. “Using detailed chemical kinetics 3D-CFD model to investigate combustion phase of a CNG-HCCI engine according to control strategy requirements”, Energy Conversion and Management , 133, 524–534.
  • Zheng, M. Reader, G.T. and Hawley, J.G. 2004. “Diesel engine exhaust gas recirculation – a review on advanced and novel concepts”. Energy Convers Manage, 45, 883–900.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Müjdat Fırat

İsmail Türkbay

Yayımlanma Tarihi 31 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 12 Sayı: 3

Kaynak Göster

APA Fırat, M., & Türkbay, İ. (2019). Homojen Dolgulu Sıkıştırma Ateşlemeli Motorlarda Enjeksiyon Zamanlamasının Motor Performansı ve Emisyon Oluşumuna Etkilerinin İncelenmesi. Erzincan University Journal of Science and Technology, 12(3), 1217-1231. https://doi.org/10.18185/erzifbed.464526