Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı İstinat Duvar Tiplerinde Aktif Toprak Basınçlarının Sayısal Analizi

Yıl 2019, Cilt: 12 Sayı: 3, 1666 - 1677, 31.12.2019
https://doi.org/10.18185/erzifbed.649503

Öz

Dayanma yapılarının tasarımında yatay toprak basıncı
dağılımı önem arz etmektedir. Birçok çalışmada, dayanma yapısına etkiyen aktif
toprak basınç dağılımı nonlineer olarak kabul edilir. Toprak basınç dağılışı
ile ilgili çok sayıda çalışma olmasına karşın, Duvar boyutlarının yatay toprak
basıncı dağılışı üzerine etkilerini irdeleyen az sayıda çalışma bulunmaktadır.
Bu çalışmada, duvar şeklinin aktif yanal toprak basınç dağılımı ve aktif
kırılma yüzeyleri üzerine etkisi incelenmiştir. Bu nedenle çeşitli tip dayanma
duvarlarına gelen yanal toprak basınç dağılışları ve oluşturdukları kırılma
yüzeyleri numerik olarak irdelenmiştir. Yapılan çalışma kapsamında, çeşitli
eğimlerdeki ağırlık tipi dayanma duvarları, farklı topuk uzunlukları ve eğime
sahip ters T biçimli dayanma duvarları göz önüne alınmıştır. Yapılan çalışma
sonucunda yanal toprak basınç dağılışının duvar tipine göre değiştiği
belirlenmiştir. Buna ek olarak duvar eğimi ve topuk uzunluğunun kırılma
yüzeyleri ve yanal toprak basınç dağılışı üzerinde etkili olduğu görülmüştür. 

Kaynakça

  • Chen, W. F., & Liu, X. L. 1990. "Limit Analysis in Soil Mechanics" , Amsterdam: Elsevier.
  • Chevalier, B., Combe, G., & Villard, P. 2008. "Experimental and Numerical Studies of Load Transfers and Arching Effect",The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG). Goa, India.
  • Chugh, A. K., & Labuz, J. . (2011). "Numerical Simulation of an Instrumented Cantilever Retaining Wall", Canadian Geotechnical Journal, 48(9), 1303–1313.
  • Çinicioğlu, Ö., Altunbaş, A., Soltanbeigi, B., & Gezgin, A. T. 2015. "Characterization of Active Failure Wedge for Cohesionless Soils", Geotechnical Engineering for Infrastructure and Development: XVI European Conference on Soil Mechanics and Geotechnical Engineering. Edinburgh, Scotland.
  • Coulomb, C. A. 1776. "Essai sur une application des règles de maximis & minimis à quelques problèmes de statique, relatifs à l’architecture" Des Sciences Memoires de MATh. et Physique Par Divers Savants, 7, 343–382.
  • Dewaikar, D. M., Pandey, S. R., & Dixit, J. 2012. "Active Thrust on an Inclined Retaining Wall With Inclined Cohesionless Backfill Due to Surcharge Effect", ISRN Soil Science, https://doi.org/10.5402/2012/750386
  • Ertuğrul, N. A. 2013. "Effect of Soil Arching On Lateral Soil Pressures Acting Upon Rigid Retaining Walls", MSc Thesis, The Graduate School of Natural and Applied Sciences Middle East Technical University.
  • Fang, Y. S., & Ishibashi, I. 1986. "Static Earth Pressures With Various Wall Movements" Journal of Geotechnical Engineering, 112(3), 317–333.
  • Goh, A. T. C. 1993. "Behavior of Cantilever Retaining Walls", Journal of Geotechnical Engineering, 119(11), 1751–1770. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:11(1751)
  • Greco, R. V. 2014. "Analytical Solution of Seismic Pseudo-Static Active Thrust Acting on Fascia Retaining Walls", Soil Dynamics and Earthquake Engineering, 57, 25–36.
  • Greco, V. 2013. "Active Thrust on Retaining Walls of Narrow Backfill Width" Computers and Geotechnics, 50, 66–78. https://doi.org/10.1016/j.compgeo.2012.12.007
  • Greco, V. R. 2001. "Active Earth Thrust on Cantilever Walls With Short Heel", Canadian Geotechnical Journal, 38(2), 401–409.
  • Handy, R. L. 1985. "The Arch in Soil Arching", Journal of Geotechnical Engineering ASCE, 111(3), 302–318.
  • Kamiloğlu, H. A., & Şadoğlu, E. 2019. "Experimental and Theoretical Investigation of Short and Long Heel Cases of Cantilever RetainingWalls in Active State", International Journal of Geomechanics. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001389
  • Kamiloğlu, H. A., Şadoğlu, E., & Yılmaz, F. 2019. Numerical Analysis of Active Earth Pressures on Inverted T Type and Semi-Gravity Walls. 3rd International Conference on Advanced Engineering Technologies. Bayburt.
  • Le, X., Wu, Y., & He, S. 2010. "Seismic Stability Analysis of Gravity Retaining Walls" Soil Dynamics and Earthquake Enginnering, 30, 875–878.
  • Lee, J. S., Chae, H. G., Kim, D. S., Jo, S. B., & Park, H. J. 2015. "Numerical Analysis of Inverted T-type Wall Under Seismic Loading" Computers and Geotechnics, 66, 85–95. https://doi.org/10.1016/j.compgeo.2015.01.013
  • Leśniewska, D., & Mróz, Z. 2000. "Limit Equilibrium Approach to Study The Evolution of Shear Band Systems in Soils" Géotechnique, 50(5), 521–536.
  • Liu, J., Sun, X., Sun, X., Wang, B., Liu, W., & He, J. 2017. "Experimental Study of Active Earth Pressure on Rigid Retaining Walls with Narrow Backfill", 2016 International Conference on Mechanics and Materials Science (MMS2016), Guangzhou, China, 864–869.
  • Morisson, E. E., & Ebeling, R. M. 1995. "Limit Equilibrium Computation of Dynamic Passive Earth-Pressure." Canadian Geotechnical Journal, 32, : 481-487.
  • Nadukuru, S. S., & Michalowski, R. L. 2012. "Arching in Distribution of Active Load on Retaining Walls", Journal of Geotechnical and Geoenvironmental Engineering, 138(5), 575–584. https://doi.org/10.1061/(Asce)Gt.1943-5606.0000617
  • Paik, K. H., & Salgado, R. 2003. "Estimation of Active Earth Pressure Against Rigid Retaining Walls Considering Arching Effects", Geotechnique, 57(7), 643–653. https://doi.org/10.1680/geot.53.7.643.37385
  • Rankine, W. J. M. 1857. "On the Stability of Loose Earth", Philosophical Transactions of the Royal Society of London (1776-1886). 1857-01-01. 147:9–27.
  • Shiau, J. S., Augarde, C. E., Lyamin, A. V., & Sloan, S. W. 2009. "Finite Element Limit Analysis of Passive Earth Resistance in Cohesionless Soils" Soils and Foundations, 48(6),843–850. https://doi.org/10.3208/sandf.48.843
  • Terzaghi, K. 1943. "Theoretical Soil Mechanics". New York: Wiley.
  • Tsagareli, Z. V. 1965. "Experimental Investigation of the Pressure of a Loose Medium on Retaining Walls With a Vertical Back Face And Horizontal Backfill Surface", J. Soil Mech. Found. Engng, ASCE, 91(4), 197–200.
  • Iskander, G.M. 2012. "Simplified Analytical Solution for Point Load Acting Behind a Cantilever Wall", Advances International Journal for Numerical and Analytical Methods in Geomechanics, 36(3), 96–100.
  • Wang, Y. Z. 2000. "Distribution of Earth Pressure on a Retaining Wall", Geotechnique, 50(1), 83–88.
  • Yang, X. L. 2007. "Upper Bound Limit Analysis of Active Earth Pressure with Different Fracture Surface and Nonlinear Yield Criterion", Theoretical and Applied Fracture Mechanics, 47(1), 46–56.

Numerical Analysis of Active Earth Pressures on Various Types of Retaining Walls

Yıl 2019, Cilt: 12 Sayı: 3, 1666 - 1677, 31.12.2019
https://doi.org/10.18185/erzifbed.649503

Öz

Lateral earth pressure distribution
is crucial in retaining structure design. In most studies, active earth
pressure distribution acting on the retaining structure is supposed as
nonlinear. Despite there are many studies about earth pressure distribution,
there are limited number of studies considering effect of wall geometry on
lateral earth pressure distribution. In this study, it is aimed to examine
effect of wall geometry on active failure surfaces and lateral earth pressure
distribution. Thus, active failure surface and active lateral earth pressure distribution
of various types of retaining wall were examined numerically. Within scope of
the analysis a gravity retaining wall with various inclinations, inverted T
type cantilever retaining wall and gravity wall with various heel lengths were
considered. The effect of wall inclination and heel length on failure mechanism
and lateral earth pressure distribution was studied. As a result of the study
it is shown that lateral earth pressure distribution varies based on wall type.
Additionally, short heel and long heel cases are effective on earth pressure
distribution. 

Kaynakça

  • Chen, W. F., & Liu, X. L. 1990. "Limit Analysis in Soil Mechanics" , Amsterdam: Elsevier.
  • Chevalier, B., Combe, G., & Villard, P. 2008. "Experimental and Numerical Studies of Load Transfers and Arching Effect",The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG). Goa, India.
  • Chugh, A. K., & Labuz, J. . (2011). "Numerical Simulation of an Instrumented Cantilever Retaining Wall", Canadian Geotechnical Journal, 48(9), 1303–1313.
  • Çinicioğlu, Ö., Altunbaş, A., Soltanbeigi, B., & Gezgin, A. T. 2015. "Characterization of Active Failure Wedge for Cohesionless Soils", Geotechnical Engineering for Infrastructure and Development: XVI European Conference on Soil Mechanics and Geotechnical Engineering. Edinburgh, Scotland.
  • Coulomb, C. A. 1776. "Essai sur une application des règles de maximis & minimis à quelques problèmes de statique, relatifs à l’architecture" Des Sciences Memoires de MATh. et Physique Par Divers Savants, 7, 343–382.
  • Dewaikar, D. M., Pandey, S. R., & Dixit, J. 2012. "Active Thrust on an Inclined Retaining Wall With Inclined Cohesionless Backfill Due to Surcharge Effect", ISRN Soil Science, https://doi.org/10.5402/2012/750386
  • Ertuğrul, N. A. 2013. "Effect of Soil Arching On Lateral Soil Pressures Acting Upon Rigid Retaining Walls", MSc Thesis, The Graduate School of Natural and Applied Sciences Middle East Technical University.
  • Fang, Y. S., & Ishibashi, I. 1986. "Static Earth Pressures With Various Wall Movements" Journal of Geotechnical Engineering, 112(3), 317–333.
  • Goh, A. T. C. 1993. "Behavior of Cantilever Retaining Walls", Journal of Geotechnical Engineering, 119(11), 1751–1770. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:11(1751)
  • Greco, R. V. 2014. "Analytical Solution of Seismic Pseudo-Static Active Thrust Acting on Fascia Retaining Walls", Soil Dynamics and Earthquake Engineering, 57, 25–36.
  • Greco, V. 2013. "Active Thrust on Retaining Walls of Narrow Backfill Width" Computers and Geotechnics, 50, 66–78. https://doi.org/10.1016/j.compgeo.2012.12.007
  • Greco, V. R. 2001. "Active Earth Thrust on Cantilever Walls With Short Heel", Canadian Geotechnical Journal, 38(2), 401–409.
  • Handy, R. L. 1985. "The Arch in Soil Arching", Journal of Geotechnical Engineering ASCE, 111(3), 302–318.
  • Kamiloğlu, H. A., & Şadoğlu, E. 2019. "Experimental and Theoretical Investigation of Short and Long Heel Cases of Cantilever RetainingWalls in Active State", International Journal of Geomechanics. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001389
  • Kamiloğlu, H. A., Şadoğlu, E., & Yılmaz, F. 2019. Numerical Analysis of Active Earth Pressures on Inverted T Type and Semi-Gravity Walls. 3rd International Conference on Advanced Engineering Technologies. Bayburt.
  • Le, X., Wu, Y., & He, S. 2010. "Seismic Stability Analysis of Gravity Retaining Walls" Soil Dynamics and Earthquake Enginnering, 30, 875–878.
  • Lee, J. S., Chae, H. G., Kim, D. S., Jo, S. B., & Park, H. J. 2015. "Numerical Analysis of Inverted T-type Wall Under Seismic Loading" Computers and Geotechnics, 66, 85–95. https://doi.org/10.1016/j.compgeo.2015.01.013
  • Leśniewska, D., & Mróz, Z. 2000. "Limit Equilibrium Approach to Study The Evolution of Shear Band Systems in Soils" Géotechnique, 50(5), 521–536.
  • Liu, J., Sun, X., Sun, X., Wang, B., Liu, W., & He, J. 2017. "Experimental Study of Active Earth Pressure on Rigid Retaining Walls with Narrow Backfill", 2016 International Conference on Mechanics and Materials Science (MMS2016), Guangzhou, China, 864–869.
  • Morisson, E. E., & Ebeling, R. M. 1995. "Limit Equilibrium Computation of Dynamic Passive Earth-Pressure." Canadian Geotechnical Journal, 32, : 481-487.
  • Nadukuru, S. S., & Michalowski, R. L. 2012. "Arching in Distribution of Active Load on Retaining Walls", Journal of Geotechnical and Geoenvironmental Engineering, 138(5), 575–584. https://doi.org/10.1061/(Asce)Gt.1943-5606.0000617
  • Paik, K. H., & Salgado, R. 2003. "Estimation of Active Earth Pressure Against Rigid Retaining Walls Considering Arching Effects", Geotechnique, 57(7), 643–653. https://doi.org/10.1680/geot.53.7.643.37385
  • Rankine, W. J. M. 1857. "On the Stability of Loose Earth", Philosophical Transactions of the Royal Society of London (1776-1886). 1857-01-01. 147:9–27.
  • Shiau, J. S., Augarde, C. E., Lyamin, A. V., & Sloan, S. W. 2009. "Finite Element Limit Analysis of Passive Earth Resistance in Cohesionless Soils" Soils and Foundations, 48(6),843–850. https://doi.org/10.3208/sandf.48.843
  • Terzaghi, K. 1943. "Theoretical Soil Mechanics". New York: Wiley.
  • Tsagareli, Z. V. 1965. "Experimental Investigation of the Pressure of a Loose Medium on Retaining Walls With a Vertical Back Face And Horizontal Backfill Surface", J. Soil Mech. Found. Engng, ASCE, 91(4), 197–200.
  • Iskander, G.M. 2012. "Simplified Analytical Solution for Point Load Acting Behind a Cantilever Wall", Advances International Journal for Numerical and Analytical Methods in Geomechanics, 36(3), 96–100.
  • Wang, Y. Z. 2000. "Distribution of Earth Pressure on a Retaining Wall", Geotechnique, 50(1), 83–88.
  • Yang, X. L. 2007. "Upper Bound Limit Analysis of Active Earth Pressure with Different Fracture Surface and Nonlinear Yield Criterion", Theoretical and Applied Fracture Mechanics, 47(1), 46–56.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hakan Alper Kamiloğlu 0000-0003-3313-9239

Erol Şadoğlu 0000-0003-3757-5126

Fatih Yılmaz 0000-0002-7962-9834

Yayımlanma Tarihi 31 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 12 Sayı: 3

Kaynak Göster

APA Kamiloğlu, H. A., Şadoğlu, E., & Yılmaz, F. (2019). Farklı İstinat Duvar Tiplerinde Aktif Toprak Basınçlarının Sayısal Analizi. Erzincan University Journal of Science and Technology, 12(3), 1666-1677. https://doi.org/10.18185/erzifbed.649503

Cited By