Araştırma Makalesi
BibTex RIS Kaynak Göster

Derin Öğrenme Kullanılarak Parmak izi Tabanlı İç Ortam Konumlandırma

Yıl 2020, Cilt: 13 Sayı: 2, 483 - 501, 31.08.2020
https://doi.org/10.18185/erzifbed.633203

Öz

Kablosuz iletişim teknolojisi ve akıllı cep telefonlarının gelişimi ile Wi-Fi ve cep telefonlarına dayalı konumlandırma hizmetlerine talep gün geçtikçe artmaktadır. Dış ortamlarda insanların veya nesnelerin konumlandırılması için GPS gibi küresel konumlandırma sistemleri kullanılırken iç ortamlarda duvar, kapı gibi engellerden dolayı uydu bağlantısı yeterli olmadığı için iç ortam konumlandırma yöntemleri tercih edilmektedir. İç ortam konumlandırma için önerilen birçok yöntem içerisinden parmak izi yöntemi günlük hayatta mevcut olan sinyal kaynaklarını kullanabildiğinden ve bu sinyalleri ekstra bir donanıma gerek duymadan cep telefonları ile elde edilebildiğinden diğer yöntemlere göre daha avantajlı bir hale gelmektedir. Bu çalışmada odaları birbirinden ayırt etmek amacı ile ev ortamında 6 farklı odadan alınan Wi-Fi sinyalleri ile oluşturulan veri kümesi, klasik bazı makine öğrenmesi yöntemleri ve derin öğrenme yaklaşımı uygulanarak oda seviyesinde sınıflandırılmıştır. Derin öğrenme uygulanması sonucunda makine öğrenmesi yöntemlerinden en yüksek sınıflandırma doğruluğuna sahip olan Rastgele Orman’ a göre %8 daha yüksek doğruluk oranı elde edilmiştir. Kendi veri kümemizin yanı sıra farklı sayıda veri ve özniteliklere sahip veri kümelerinde (WASP ve WILDS) de makine öğrenmesi yöntemleri ile derin öğrenmenin bir yöntemi olan Evrişimsel Sinir Ağı (ESA) karşılaştırılmış ve ESA’ nın %98 doğruluğa ulaştığı görülmüştür. Çalışma sonucunda ESA ile uygulanan derin öğrenmenin veri sayısı fazla ve etiket sayısı az olan veri kümelerinde daha iyi performans gösterdiği gözlemlenmiştir.

Kaynakça

  • Ban, R., Kaji, K., Hiroi, K.,and Kawaguchi, N., 2015. Indoor positioning method integrating pedestrian Dead Reckoning with magnetic field and Wi-Fi fingerprints. Mobile Computing and Ubiquitous Networking (ICMU), pp.167-172
  • Bolliger, P., 2008. Redpin-adaptive, zero-configuration indoor localization through user collaboration. The first ACM international workshop on Mobile entity localization and tracking in GPS-less environments, 55-60
  • Çarkacı, N., https://medium.com/deep-learning-turkiye/derin-ogrenme-uygulamalarinda-en-sik-kullanilan-hiper-parametreler-ece8e9125c4, Son erişim tarihi: 10 Haziran 2018
  • Goga, N., Vasilateanu, A., Mihailescu, M. N., Guta, L., Molnar, A., and Bocicor, l., Bolea, L., and Stoica, D., 2016. Evaluating indoor localization using WiFi for patient tracking. IEEE Fundamentals of Electrical Engineering (ISFEE), pp. 1-4
  • Huynh, S. M., David, P., Fong, A.C.M and Tang, J., 2014. Novel RFID and ontology based home l.,ocalization system for misplaced objects. IEEE Transactions on Consumer Electronics, cilt 60, pp.402-410
  • Karabey, I., Bayindir, L., 2015. An evaluation of fingerprint-based indoor localization techniques. IEEE Signal Processing and Communications Applications Conference (SIU), pp. 2254-2257
  • Krumm, John, 2016. Ubiquitous computing Fundamentals. CRC Press
  • Lan, K., Shih, W., 2014. An intelligent driver location system for smart parking. Expert Systems with Applications Elsevier, 41, pp.2443-2456
  • Lau, S., https://towardsdatascience.com/a-walkthrough-of-convolutional-neural-network-7f474f91d7bd, Son erişim tarihi: 01.12.2018
  • Le, D. V., Meratnia, N., Havinga P. J. M., 2018. Unsupervised Deep Feature Learning to Reduce the Collection of Fingerprints for Indoor Localization using Deep Belief Networks, International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24-27 September, Nantes, France
  • Lin, H., Zhang, Y., Griss, M., Landa, I., 2009. WASP: an enhanced indoor locationing algorithm for a congested Wi-Fi environment. ACM international workshop on Mobile entity localization and tracking in GPS-less environments, pp. 183-196
  • MarketandMarkets Research, https://www.marketsandmarkets.com/Market-Reports/indoor-positioning-navigation-ipin-market-989.html, Son erişim tarihi: 31.03.2019
  • Niu, J., Wang, B., Cheng, L., Rodrigues, J., 2015. WicLoc: An indoor localization system based on WiFi fingerprints and crowdsourcing. IEEE Communications (ICC), pp. 3003-3013
  • Rohra, J.G., Perumal, B., Narayanan, S. J., Thakur, P., and Bhatt, R. B, 2017. User Localization in an Indoor Environment Using Fuzzy Hybrid of Particle Swarm Optimization & Gravitational Search Algorithm with Neural Networks. Proceedings of Sixth International Conference on Soft Computing for Problem Solving, 286-295.
  • ReportLinker, https://www.prnewswire.com/news-releases/global-indoor-location-market-analysis-2017-2023-300561176.html, Son erişim tarihi: 31.03.2019
  • Serrao, M., Shahrabadi, S., Moreno, M. Jose, J.T., Rodrigues, J.I., and Rodrigues, J.M.F., and du Buf, JM Hans, 2015. Computer vision and GIS for the navigation of blind persons in buildings. Universal Access in the Information Society, pp. vol. 14, 67-80
  • Toh, C., and Lau, S.L., 2016. Indoor localisation using existing WiFi infrastructure—A case study at a university building. Virtual System & Multimedia (VSMM), pp. 1-5UCI, https://archive.ics.uci.edu/ml/datasets/Wireless+Indoor+Localization, Son erişim tarihi: 05.11.2018
  • Vilamala, A., Madsen, K. H., and Hansen, L. K., 2017. “Deep Convolutional Neural Networks for Interpretable Analysis of EEG Sleep Stage Scoring. Proceedings of the 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)
  • Wang, Y., and Wong, A. K., and Cheng, R.S., 2015. “Adaptive room-level localization system with crowd-sourced WiFi data”, SAI Intelligent Systems Conference (IntelliSys), pp. 463-469
  • Wang, Y., Zhang X., Gao Q., Yue, H., and Wang, H., 2017. Device-Free Wireless Localization and Activity Recognition: A Deep Learning Approach. IEEE Transactıons On Vehicular Technology, pp. 6258 - 6267
  • Wang, X., Gao, L.,Mao, S., Pandey, S., 2017. CSI-based Fingerprinting for Indoor Localization: A Deep Learning Approach. IEEE Transactıons On Vehicular Technology, vol. 66, pp.763-776
  • Wu, F., Xing, J., Dong, B., 2015. An Indoor Localization Method Based on RSSI of Adjustable Power WiFi Router. Instrumentation and Measurement, Computer, Communication and Control (IMCCC), pp. 1481-1484
  • Zou, H., Chen, Z., Jiang, H., Xie, L., and Spanos, C., 2017. Accurate indoor localization and tracking using mobile phone inertial sensors, WiFi and iBeacon. IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), 1-4
  • Zheng, L., Hu, B., and Chen, H., 2017. A high resolution time-reversal based approach for indoor localization using commodity WiFi devices. Cooperative Positioning and Service (CPGP), pp. 300-304
  • Zheng, W., Sengupta, R., Fodero, J., Li,X., 2017. DeepPositioning: Intelligent Fusion of Pervasive Magnetic Field and WiFi Fingerprinting for Smartphone Indoor Localization via Deep Learning, 16th IEEE International Conference on Machine Learning and Applications, pp. 7-13.
  • Lei, X., Zhu, X., Chi, H., & Jiang, S. (2015). “Privacy-preserving use of genomic data on mobile devices”, 2015 IEEE/CIC International Conference On Communications In China (ICCC).
  • Naveed, M., Ayday, E., Clayton, E. W., Fellay, J., Gunter, C. A., Hubaux, J. P., … Wang, X. (2015). Privacy in the Genomic Era. ACM computing surveys, 48(1), 6.NCBI, https://www.ncbi.nlm.nih.gov/projects/SNP/. 02.12.2018
  • NIH, "Guidance for Institutions Submitting Grant Applications and Contract Proposals under the NIH Genomic Data Sharing Policy for Human and Non-Human Data,"https://gds.nih.gov/pdf/GDS_Policy_Guidance_Grant_App_Contract_Proposals.pdf.17.04.2017.
  • Nyholt, D. R., Yu, C. E., & Visscher, P. M. (2009). “On Jim Watson's APOE status: genetic information is hard to hide”, European journal of human genetics : EJHG, 17(2), 147–149.
  • Perl, H., Mohammed, Y., Brenner, M., & Smith, M. (2012). “Fast confidential search for bio-medical data using Bloom filters and Homomorphic Cryptography”, 2012 IEEE 8Th International Conference On E-Science
  • Perl, H., Mohammed, Y., Brenner, M., & Smith, M. (2014). “Privacy/performance trade-off in private search on bio-medical data”, Future Generation Computer Systems, 36, 441-452.
  • Schneier B., (1993). “Applied Cryptograpgy: Protocols, Algorithms, and Source Code in C”, John Wiley & Sons, Inc. New York, NY, USA
  • Sweeney L., (2002). "k-anonymity: a model for protecting privacy," International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 5-10, 557-570
  • Sweeney, L. (1997). “Weaving Technology and Policy Together to Maintain Confidentiality”, The Journal Of Law, Medicine & Ethics, 25(2-3), 98-110.
  • Sweeney, L., Abu, A., & Winn, J. (2013). “Identifying Participants in the Personal Genome Project by Name”, SSRN Electronic Journal.
  • Wang, B. 2016 “Search over Encrypted Data in Cloud Computing”, Doktora, Faculty of Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İşıl Karabey Aksakallı 0000-0002-4156-9098

Levent Bayındır 0000-0001-7318-5884

Yayımlanma Tarihi 31 Ağustos 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 13 Sayı: 2

Kaynak Göster

APA Karabey Aksakallı, İ., & Bayındır, L. (2020). Derin Öğrenme Kullanılarak Parmak izi Tabanlı İç Ortam Konumlandırma. Erzincan University Journal of Science and Technology, 13(2), 483-501. https://doi.org/10.18185/erzifbed.633203