Araştırma Makalesi
BibTex RIS Kaynak Göster

PhTAD-Substituted Dihydropyrrole Compounds Regulate Apoptotic Cell Death in MCF-7 Cells

Yıl 2021, Cilt: 14 Sayı: 2, 737 - 750, 31.08.2021
https://doi.org/10.18185/erzifbed.894125

Öz

Breast cancer is the most common type of cancer amongst women. Apoptosis is known as a programmed cell death and this mechanism induces cancer cell death. Dihydropyrrole compounds contain a heterocyclic structure and these molecules have many biological effects including functioning as antioxidants and anticancer molecules.
In this regard, the aim of this research was to investigate how PhTAD-substituted dihydropyrrole compounds affect the expression of apoptotic cell death proteins in the MCF-7 cells. The levels of Bax, Bcl-2, and cleaved caspase-3 proteins in the MCF-7 cells were measured using the ELISA method.
The results revealed that CI, CII, CIII, CV, CVII, CVIII, CXI and CXII increased Bax, while CXIII and CXIV markedly decreased Bax. In addition, compounds CI, CII, CIII, CVII, CVIII, CXI and CXII upregulated Bcl2. Conversely, CIV, and CXIV downregulated Bcl2. Moreover, CIV and CXIV increased the Bax/Bcl2 ratio. However, CVIII and CXIII decreased Bax/Bcl2 ratio. In addition, CI, CIV, CIX and CXII treatment increased cleaved caspase-3 in MCF-7 cells compared to the negative control. These findings indicate that the PhTAD-substituted dihydropyrrole derivative molecules induced apoptotic proteins as a potential regulator of cancer cell death.

Destekleyen Kurum

Amasya University

Proje Numarası

FMB-BAP 18-0334

Teşekkür

The authors thank the Amasya University Central Research Laboratory (AUMAULAB) for their kind understanding of using their facilities.

Kaynakça

  • AnvariFar, H., Amirkolaie, A. K., Miandare, H. K., Ouraji, H., Jalali, M. A., Üçüncü, S. İ. (2017). “Apoptosis in fish: environmental factors and programmed cell death”. Cell and tissue research, 368(3), 425-439.
  • Ayar, A., Aksahin, M., Mesci, S., Yazgan, B., Gül, M., Yıldırım, T. (2021). Antioxidant, cytotoxic activity and pharmacokinetic studies by SwissAdme, Molinspiration, Osiris and DFT of PhTAD-substituted dihydropyrrole derivatives. Current Computer-aided Drug Design. DOI: 10.2174/1573409917666210223105722.
  • Arthur, C. R., Gupton, J. T., Kellogg, G. E., Yeudall, W. A., Cabot, M. C., Newsham, I. F., Gewirtz, D. A. (2007). “Autophagic cell death, polyploidy and senescence induced in breast tumor cells by the substituted pyrrole JG-03-14, a novel microtubule poison”. Biochemical pharmacology, 74(7), 981-991.
  • Ashkenazi, A. (2015). “Targeting the extrinsic apoptotic pathway in cancer: lessons learned and future directions”. J Clin Invest, 125(2), 487-489.
  • Azimian, H., Dayyani, M., Toossi, M. T. B., Mahmoudi, M. (2018).” Bax/Bcl-2 expression ratio in prediction of response to breast cancer radiotherapy”. Iranian journal of basic medical sciences, 21(3), 325.
  • Badolato, M., Carullo, G., Armentano, B., Panza, S., Malivindi, R., Aiello, F. (2017). “Synthesis and anti-proliferative activity of a small library of 7-substituted 5H-pyrrole [1, 2-a][3, 1] benzoxazin-5-one derivatives”. Bioorganic & medicinal chemistry letters, 27(14), 3092-3095.
  • Bavadi, M., Niknam, K., Shahraki, O. (2017). “Novel pyrrole derivatives bearing sulfonamide groups: Synthesis in vitro cytotoxicity evaluation, molecular docking and DFT study”. Journal of Molecular Structure, 1146, 242-253.
  • Belkacemi, L. (2018). “Exploiting the Extrinsic and the Intrinsic Apoptotic Pathways for Cancer Therapeutics”. J Cancer Cure. 1(1), 1004.
  • Boichuk, S., Galembikova, A., Zykova, S., Ramazanov, B., Khusnutdinov, R., Dunaev, P., Lombardi, V. (2016). “Ethyl-2-amino-pyrrole-3-carboxylates are novel potent anticancer agents that affect tubulin polymerization, induce G2/M cell-cycle arrest, and effectively inhibit soft tissue cancer cell growth in vitro”. Anti-Cancer Drugs, 27(7), 620-634.
  • Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., Jemal, A. (2018). “Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries”. CA: A Cancer Journal for Clinicians.
  • Brentnall, M., Rodriguez-Menocal, L., De Guevara, R. L., Cepero, E., Boise, L. H. (2013). “Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis”. BMC cell biology, 14(1), 32.
  • Brown, J. M. Attardi, L. D. (2005). “The role of apoptosis in cancer development and treatment response”. Nat Rev Cancer. 5(3):231‐237.
  • Chang, S. M., Jain, V., Chen, T. L., Patel, A. S., Pidugu, H. B., Lin, Y. W., Lee, T. C. (2019). “Design and synthesis of 1, 2-bis (hydroxymethyl) pyrrolo [2, 1-a] phthalazine hybrids as potent anticancer agents that inhibit angiogenesis and induce DNA interstrand cross-links”. Journal of medicinal chemistry, 62(5), 2404-2418.
  • Dai, X., Cheng, H., Bai, Z., & Li, J. (2017). Breast cancer cell line classification and its relevance with breast tumor subtyping. Journal of Cancer, 8(16), 3131.
  • Elena-Real, C. A., Díaz-Quintana, A., González-Arzola, K., Velázquez-Campoy, A., Orzáez, M., López-Rivas, A., Díaz-Moreno, I. (2018). “Cytochrome c speeds up caspase cascade activation by blocking 14-3-3ε-dependent Apaf-1 inhibition”. Cell death & disease, 9(3), 1-12.
  • Elmore, S. (2007). “Apoptosis: a review of programmed cell death”. Toxicologic pathology, 35(4), 495-516.
  • Fuchs, Y., Steller, H. (2011). “Programmed cell death in animal development and disease”. Cell, 147(4), 742–758.
  • Fulda, S. (2013). “How to target apoptosis signaling pathways for the treatment of pediatric cancers”. Front Oncol, 3, 22.
  • Futin, K. M. (2004). “Apoptosis pathways in cancer and cancer therapy”. Cancer Immunol Immunother, 53(3), 153-159.
  • Galluzzi, L., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Agostinis, P., Annicchiarico-Petruzzelli, M. (2018). “Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018”. Cell Death & Differentiation, 25(3), 486-541.
  • Garbaccio, R. M., Fraley, M. E., Tasber, E. S., Olson, C. M., Hoffman, W. F., Arrington, K. L., Hartman, G. D. (2006). “Kinesin spindle protein (KSP) inhibitors. Part 3: Synthesis and evaluation of phenolic 2, 4-diaryl-2, 5-dihydropyrroles with reduced hERG binding and employment of a phosphate prodrug strategy for aqueous solubility”. Bioorganic & medicinal chemistry letters, 16(7), 1780-1783.
  • Green, D. R., Llambi, F. (2015). “Cell Death Signaling”. Cold Spring Harbor perspectives in biology, 7(12), a006080.
  • Gul, M., Elemes, Y., Pelit, E., Dernektsi, E., Georgiou, D., Oikonomou, K., Lis,T., Szafert, S. (2017). Synthesis of PhTAD-substituted dihydropyrrole derivatives via stereospecific C–H amination. Research on Chemical Intermediates, 43(2), 1031-1045.
  • Howlader, N. N. A. M., Noone, A. M., Krapcho, M., Miller, D., Bishop, K., Kosary, C. L., Cronin, K. A. (2017). “SEER cancer statistics review”, 1975-2014.
  • Jan, R. Chaudhry, G. E. (2019). “Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics”. Adv Pharm Bull, 9(2), 205-218.
  • Ji, J., Sajjad, F., You, Q., Xing, D., Fan, H., Reddy, A. G., Dong, S. (2020). “Synthesis and biological evaluation of substituted pyrrolidines and pyrroles as potential anticancer agents”. Archiv der Pharmazie, 353(12), 2000136.
  • Karna, P. Yang, L. (2009). “Apoptotic signaling pathway and resistance to apoptosis in breast cancer stem cells”. In Apoptosis in Carcinogenesis and Chemotherapy, 1-23.
  • Kominami, K., Nakabayashi, J., Nagai, T., Tsujimura, Y., Chiba, K., Kimura, H., Sakamaki, K. (2012). “The molecular mechanism of apoptosis upon caspase-8 activation: Quantitative experimental validation of a mathematical model”. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1823(10), 1825-1840.
  • Kondratskyi, A., Kondratska, K., Skryma, R., Prevarskaya, N. (2015). “Ion channels in the regulation of apoptosis”. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1848(10), 2532-2546.
  • Kuznietsova, H., Dziubenko, N., Byelinska, I., Hurmach, V., Bychko, A., Lynchak, O., Rybalchenko, V. (2020). “Pyrrole derivatives as potential anti-cancer therapeutics: synthesis, mechanisms of action, safety”. Journal of drug targeting, 28(5), 547-563.
  • Ma, X., & Yu, H. (2006). “Global burden of cancer”. The Yale journal of biology and medicine, 79(3-4), 85–94. Nikoletopoulou, V., Markaki, M., Palikaras, K., Tavernarakis, N. (2013). “Crosstalk between apoptosis, necrosis and autophagy”. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1833(12), 3448-3459.
  • Mohammed, M. R. (2019). Design, synthesis, and cytotoxicity screening of 5-aryl-3-(2-(pyrrolyl) thiophenyl)-1, 2, 4-oxadiazoles as potential antitumor molecules on breast cancer MCF-7 cells. Bioorganic chemistry, 86, 609-623.
  • Olszewska, P., Cal, D., Zagórski, P., Mikiciuk-Olasik, E. (2020). “A novel trifluoromethyl 2-phosphonopyrrole analogue inhibits human cancer cell migration and growth by cell cycle arrest at G1 phase and apoptosis”. European journal of pharmacology, 871, 172943.
  • Opferman, J. T. (2008). “Apoptosis in the development of the immune system”. Cell Death & Differentiation, 15(2), 234-242.
  • Proto, M. C., Fiore, D., Forte, G., Cuozzo, P., Ramunno, A., Fattorusso, C., Franceschelli, S. (2020). “Tetra-substituted pyrrole derivatives act as potent activators of p53 in melanoma cells”. Investigational new drugs, 38(3), 634-649.
  • Qin, M., Tian, Y., Han, X., Cao, Q., Zheng, S., Liu, C., Hou, Y. (2020). “Structural modifications of indolinones bearing a pyrrole moiety and discovery of a multi-kinase inhibitor with potent antitumor activity”. Bioorganic & medicinal chemistry, 28(11), 115486.
  • Schwartz-Roberts, J. L., Shajahan, A. N., Cook, K. L., Wärri, A., Abu-Asab, M., & Clarke, R. (2013). GX15-070 (Obatoclax) Induces Apoptosis and Inhibits Cathepsin D-and L–Mediated Autophagosomal Lysis in Antiestrogen-Resistant Breast Cancer Cells. Molecular cancer therapeutics, 12(4), 448-459.
  • Sebastian, J. (2017). “Dihydropyrazole and dihydropyrrole structures-based design of Kif15 inhibitors as novel therapeutic agents for cancer”. Computational biology and chemistry, 68, 164-174.
  • Siddiqui, W. A., Ahad, A., Ahsan, H. (2015). “The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update”. Archives of toxicology, 89(3), 289-317.
  • Tarnavsky, S. S., Dubinina, G. G., Golovach, S. M., Yarmoluk, S. M. (2003). “Antitumor activity among derivatives of the 3-chloro-4-(3-hydroxyanilino) -2,5-dihydropyrrole-2,5-dione”. Biopolymers and Cell, 19(6), 548–552.
  • Tikhomirov, A. S., Litvinova, V. A., Andreeva, D. V., Tsvetkov, V. B., Dezhenkova, L. G., Volodina, Y. L., Shchekotikhin, A. E. (2020). “Amides of pyrrole-and thiophene-fused anthraquinone derivatives: A role of the heterocyclic core in antitumor properties”. European Journal of Medicinal Chemistry, 199, 112294.
  • Wang, C., Youle, R. J. (2009). “The role of mitochondria in apoptosis”. Annual review of genetics, 43, 95–118.
  • Wang, D., Li, L., Feng, H., Sun, H., Almeida-Veloso, F., Charavin, M., Désaubry, L. (2018). “Catalyst-free three-component synthesis of highly functionalized 2, 3-dihydropyrroles”. Green Chemistry, 20(12), 2775-2780.
  • Wei, L., Jin, X., Cao, Z. Li, W. (2016). “Evodiamine Induces Extrinsic and Intrinsic Apoptosis of Ovarian Cancer Cells via the Mitogen-Activated Protein kinase/phosphatidylinositol-3-kinase/protein Kinase B Signaling Pathways”. Journal of traditional Chinese medicine, 36(3), 353–359.
  • Wu, Y., Wang, D., Wang, X., Wang, Y., Ren, F., Chang, D., Jia, B. (2011). “Caspase 3 is activated through caspase 8 instead of caspase 9 during H2O2-induced apoptosis in HeLa cells”. Cellular physiology and biochemistry, 27(5), 539-546.
  • Zhang, M., Liang, J., Jiang, S. K., Xu, L., Wu, Y. L., Awadasseid, A., Zhang, W. (2020). “Design, synthesis and anti-cancer activity of pyrrole-imidazole polyamides through target-downregulation of c-kit gene expression”. European Journal of Medicinal Chemistry, 207, 112704.
  • Zhang, N., Hartig, H., Dzhagalov, I., Draper, D., He, Y. W. (2005). The role of apoptosis in the development and function of T lymphocytes. Cell research, 15(10), 749-769.
  • Zhu, T., Shen, S., Lu, Q., Ye, X., Ding, W., Chen, R., Ma, T. (2017). “Design and synthesis of novel N (4)-substituted thiosemicarbazones bearing a pyrrole unit as potential anticancer agents”. Oncology letters, 13(6), 4493-4500.

PhTAD-Sübstitüe Dihidropirol Bileşikleri MCF-7 Hücrelerinde Apoptotik Hücre Ölümünü Düzenler

Yıl 2021, Cilt: 14 Sayı: 2, 737 - 750, 31.08.2021
https://doi.org/10.18185/erzifbed.894125

Öz

Meme kanseri, kadınlar arasında en sık görülen kanser türüdür. Apoptoz, programlanmış hücre ölümü olarak bilinir ve bu mekanizma kanser hücrelerinin ölümünü indükler. Dihidropirol bileşikleri heterosiklik bir yapı içerir ve bu moleküllerin antioksidan ve antikanser gibi birçok biyolojik etkisi vardır.
Bu noktada, Çalışmamızın amacı, PhTAD türevli dihidropirol bileşiklerinin MCF-7 hücrelerindeki apoptotik hücre ölüm proteinlerinin ifadesini nasıl etkilediğini araştırmaktır.
Bax, Bcl-2 ve kesilmiş kaspaz 3'ün protein miktarları, MCF-7 hücre hattında ELISA yöntemi ile ölçülmüştür.
Sonuçlarımız, bileşik (B)I, BII, BIII, BV, BVII, BVIII, BXI ve BXII'nin Bax'ı artırdığını, BXIII ve BXIV'ün ise Bax'ı önemli ölçüde azalttığını ortaya koymuştur. Ek olarak, BI, BII, BIII, BVII, BVIII, BXI ve BXII’nin Bcl2'yi yukarı regüle ederken BIV, BXIII ve BXIV’ün Bcl2'yi aşağı regüle ettiği tespit edilmiştir. Ayrıca, BIV ve BXIV’ün Bax / Bcl2 oranını arttırdığı, BVIII ve BXIII’ün ise Bax / Bcl2 oranını düşürdüğü belirlenmiştir. Negatif kontrole kıyasla BI, BIV, BIX ve BXII uygulanan MCF-7 hücrelerinde kesilmiş kaspaz 3 ekspresyonunun arttığı tespit edilmiştir.
Bulgularımız, PhTAD ile türevlendirilmiş dihidropirol moleküllerinin, kanser hücresi ölümünün potansiyel bir düzenleyicisi olarak apoptotik proteinleri indüklediğine işaret etmektedir.

Proje Numarası

FMB-BAP 18-0334

Kaynakça

  • AnvariFar, H., Amirkolaie, A. K., Miandare, H. K., Ouraji, H., Jalali, M. A., Üçüncü, S. İ. (2017). “Apoptosis in fish: environmental factors and programmed cell death”. Cell and tissue research, 368(3), 425-439.
  • Ayar, A., Aksahin, M., Mesci, S., Yazgan, B., Gül, M., Yıldırım, T. (2021). Antioxidant, cytotoxic activity and pharmacokinetic studies by SwissAdme, Molinspiration, Osiris and DFT of PhTAD-substituted dihydropyrrole derivatives. Current Computer-aided Drug Design. DOI: 10.2174/1573409917666210223105722.
  • Arthur, C. R., Gupton, J. T., Kellogg, G. E., Yeudall, W. A., Cabot, M. C., Newsham, I. F., Gewirtz, D. A. (2007). “Autophagic cell death, polyploidy and senescence induced in breast tumor cells by the substituted pyrrole JG-03-14, a novel microtubule poison”. Biochemical pharmacology, 74(7), 981-991.
  • Ashkenazi, A. (2015). “Targeting the extrinsic apoptotic pathway in cancer: lessons learned and future directions”. J Clin Invest, 125(2), 487-489.
  • Azimian, H., Dayyani, M., Toossi, M. T. B., Mahmoudi, M. (2018).” Bax/Bcl-2 expression ratio in prediction of response to breast cancer radiotherapy”. Iranian journal of basic medical sciences, 21(3), 325.
  • Badolato, M., Carullo, G., Armentano, B., Panza, S., Malivindi, R., Aiello, F. (2017). “Synthesis and anti-proliferative activity of a small library of 7-substituted 5H-pyrrole [1, 2-a][3, 1] benzoxazin-5-one derivatives”. Bioorganic & medicinal chemistry letters, 27(14), 3092-3095.
  • Bavadi, M., Niknam, K., Shahraki, O. (2017). “Novel pyrrole derivatives bearing sulfonamide groups: Synthesis in vitro cytotoxicity evaluation, molecular docking and DFT study”. Journal of Molecular Structure, 1146, 242-253.
  • Belkacemi, L. (2018). “Exploiting the Extrinsic and the Intrinsic Apoptotic Pathways for Cancer Therapeutics”. J Cancer Cure. 1(1), 1004.
  • Boichuk, S., Galembikova, A., Zykova, S., Ramazanov, B., Khusnutdinov, R., Dunaev, P., Lombardi, V. (2016). “Ethyl-2-amino-pyrrole-3-carboxylates are novel potent anticancer agents that affect tubulin polymerization, induce G2/M cell-cycle arrest, and effectively inhibit soft tissue cancer cell growth in vitro”. Anti-Cancer Drugs, 27(7), 620-634.
  • Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., Jemal, A. (2018). “Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries”. CA: A Cancer Journal for Clinicians.
  • Brentnall, M., Rodriguez-Menocal, L., De Guevara, R. L., Cepero, E., Boise, L. H. (2013). “Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis”. BMC cell biology, 14(1), 32.
  • Brown, J. M. Attardi, L. D. (2005). “The role of apoptosis in cancer development and treatment response”. Nat Rev Cancer. 5(3):231‐237.
  • Chang, S. M., Jain, V., Chen, T. L., Patel, A. S., Pidugu, H. B., Lin, Y. W., Lee, T. C. (2019). “Design and synthesis of 1, 2-bis (hydroxymethyl) pyrrolo [2, 1-a] phthalazine hybrids as potent anticancer agents that inhibit angiogenesis and induce DNA interstrand cross-links”. Journal of medicinal chemistry, 62(5), 2404-2418.
  • Dai, X., Cheng, H., Bai, Z., & Li, J. (2017). Breast cancer cell line classification and its relevance with breast tumor subtyping. Journal of Cancer, 8(16), 3131.
  • Elena-Real, C. A., Díaz-Quintana, A., González-Arzola, K., Velázquez-Campoy, A., Orzáez, M., López-Rivas, A., Díaz-Moreno, I. (2018). “Cytochrome c speeds up caspase cascade activation by blocking 14-3-3ε-dependent Apaf-1 inhibition”. Cell death & disease, 9(3), 1-12.
  • Elmore, S. (2007). “Apoptosis: a review of programmed cell death”. Toxicologic pathology, 35(4), 495-516.
  • Fuchs, Y., Steller, H. (2011). “Programmed cell death in animal development and disease”. Cell, 147(4), 742–758.
  • Fulda, S. (2013). “How to target apoptosis signaling pathways for the treatment of pediatric cancers”. Front Oncol, 3, 22.
  • Futin, K. M. (2004). “Apoptosis pathways in cancer and cancer therapy”. Cancer Immunol Immunother, 53(3), 153-159.
  • Galluzzi, L., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Agostinis, P., Annicchiarico-Petruzzelli, M. (2018). “Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018”. Cell Death & Differentiation, 25(3), 486-541.
  • Garbaccio, R. M., Fraley, M. E., Tasber, E. S., Olson, C. M., Hoffman, W. F., Arrington, K. L., Hartman, G. D. (2006). “Kinesin spindle protein (KSP) inhibitors. Part 3: Synthesis and evaluation of phenolic 2, 4-diaryl-2, 5-dihydropyrroles with reduced hERG binding and employment of a phosphate prodrug strategy for aqueous solubility”. Bioorganic & medicinal chemistry letters, 16(7), 1780-1783.
  • Green, D. R., Llambi, F. (2015). “Cell Death Signaling”. Cold Spring Harbor perspectives in biology, 7(12), a006080.
  • Gul, M., Elemes, Y., Pelit, E., Dernektsi, E., Georgiou, D., Oikonomou, K., Lis,T., Szafert, S. (2017). Synthesis of PhTAD-substituted dihydropyrrole derivatives via stereospecific C–H amination. Research on Chemical Intermediates, 43(2), 1031-1045.
  • Howlader, N. N. A. M., Noone, A. M., Krapcho, M., Miller, D., Bishop, K., Kosary, C. L., Cronin, K. A. (2017). “SEER cancer statistics review”, 1975-2014.
  • Jan, R. Chaudhry, G. E. (2019). “Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics”. Adv Pharm Bull, 9(2), 205-218.
  • Ji, J., Sajjad, F., You, Q., Xing, D., Fan, H., Reddy, A. G., Dong, S. (2020). “Synthesis and biological evaluation of substituted pyrrolidines and pyrroles as potential anticancer agents”. Archiv der Pharmazie, 353(12), 2000136.
  • Karna, P. Yang, L. (2009). “Apoptotic signaling pathway and resistance to apoptosis in breast cancer stem cells”. In Apoptosis in Carcinogenesis and Chemotherapy, 1-23.
  • Kominami, K., Nakabayashi, J., Nagai, T., Tsujimura, Y., Chiba, K., Kimura, H., Sakamaki, K. (2012). “The molecular mechanism of apoptosis upon caspase-8 activation: Quantitative experimental validation of a mathematical model”. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1823(10), 1825-1840.
  • Kondratskyi, A., Kondratska, K., Skryma, R., Prevarskaya, N. (2015). “Ion channels in the regulation of apoptosis”. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1848(10), 2532-2546.
  • Kuznietsova, H., Dziubenko, N., Byelinska, I., Hurmach, V., Bychko, A., Lynchak, O., Rybalchenko, V. (2020). “Pyrrole derivatives as potential anti-cancer therapeutics: synthesis, mechanisms of action, safety”. Journal of drug targeting, 28(5), 547-563.
  • Ma, X., & Yu, H. (2006). “Global burden of cancer”. The Yale journal of biology and medicine, 79(3-4), 85–94. Nikoletopoulou, V., Markaki, M., Palikaras, K., Tavernarakis, N. (2013). “Crosstalk between apoptosis, necrosis and autophagy”. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1833(12), 3448-3459.
  • Mohammed, M. R. (2019). Design, synthesis, and cytotoxicity screening of 5-aryl-3-(2-(pyrrolyl) thiophenyl)-1, 2, 4-oxadiazoles as potential antitumor molecules on breast cancer MCF-7 cells. Bioorganic chemistry, 86, 609-623.
  • Olszewska, P., Cal, D., Zagórski, P., Mikiciuk-Olasik, E. (2020). “A novel trifluoromethyl 2-phosphonopyrrole analogue inhibits human cancer cell migration and growth by cell cycle arrest at G1 phase and apoptosis”. European journal of pharmacology, 871, 172943.
  • Opferman, J. T. (2008). “Apoptosis in the development of the immune system”. Cell Death & Differentiation, 15(2), 234-242.
  • Proto, M. C., Fiore, D., Forte, G., Cuozzo, P., Ramunno, A., Fattorusso, C., Franceschelli, S. (2020). “Tetra-substituted pyrrole derivatives act as potent activators of p53 in melanoma cells”. Investigational new drugs, 38(3), 634-649.
  • Qin, M., Tian, Y., Han, X., Cao, Q., Zheng, S., Liu, C., Hou, Y. (2020). “Structural modifications of indolinones bearing a pyrrole moiety and discovery of a multi-kinase inhibitor with potent antitumor activity”. Bioorganic & medicinal chemistry, 28(11), 115486.
  • Schwartz-Roberts, J. L., Shajahan, A. N., Cook, K. L., Wärri, A., Abu-Asab, M., & Clarke, R. (2013). GX15-070 (Obatoclax) Induces Apoptosis and Inhibits Cathepsin D-and L–Mediated Autophagosomal Lysis in Antiestrogen-Resistant Breast Cancer Cells. Molecular cancer therapeutics, 12(4), 448-459.
  • Sebastian, J. (2017). “Dihydropyrazole and dihydropyrrole structures-based design of Kif15 inhibitors as novel therapeutic agents for cancer”. Computational biology and chemistry, 68, 164-174.
  • Siddiqui, W. A., Ahad, A., Ahsan, H. (2015). “The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update”. Archives of toxicology, 89(3), 289-317.
  • Tarnavsky, S. S., Dubinina, G. G., Golovach, S. M., Yarmoluk, S. M. (2003). “Antitumor activity among derivatives of the 3-chloro-4-(3-hydroxyanilino) -2,5-dihydropyrrole-2,5-dione”. Biopolymers and Cell, 19(6), 548–552.
  • Tikhomirov, A. S., Litvinova, V. A., Andreeva, D. V., Tsvetkov, V. B., Dezhenkova, L. G., Volodina, Y. L., Shchekotikhin, A. E. (2020). “Amides of pyrrole-and thiophene-fused anthraquinone derivatives: A role of the heterocyclic core in antitumor properties”. European Journal of Medicinal Chemistry, 199, 112294.
  • Wang, C., Youle, R. J. (2009). “The role of mitochondria in apoptosis”. Annual review of genetics, 43, 95–118.
  • Wang, D., Li, L., Feng, H., Sun, H., Almeida-Veloso, F., Charavin, M., Désaubry, L. (2018). “Catalyst-free three-component synthesis of highly functionalized 2, 3-dihydropyrroles”. Green Chemistry, 20(12), 2775-2780.
  • Wei, L., Jin, X., Cao, Z. Li, W. (2016). “Evodiamine Induces Extrinsic and Intrinsic Apoptosis of Ovarian Cancer Cells via the Mitogen-Activated Protein kinase/phosphatidylinositol-3-kinase/protein Kinase B Signaling Pathways”. Journal of traditional Chinese medicine, 36(3), 353–359.
  • Wu, Y., Wang, D., Wang, X., Wang, Y., Ren, F., Chang, D., Jia, B. (2011). “Caspase 3 is activated through caspase 8 instead of caspase 9 during H2O2-induced apoptosis in HeLa cells”. Cellular physiology and biochemistry, 27(5), 539-546.
  • Zhang, M., Liang, J., Jiang, S. K., Xu, L., Wu, Y. L., Awadasseid, A., Zhang, W. (2020). “Design, synthesis and anti-cancer activity of pyrrole-imidazole polyamides through target-downregulation of c-kit gene expression”. European Journal of Medicinal Chemistry, 207, 112704.
  • Zhang, N., Hartig, H., Dzhagalov, I., Draper, D., He, Y. W. (2005). The role of apoptosis in the development and function of T lymphocytes. Cell research, 15(10), 749-769.
  • Zhu, T., Shen, S., Lu, Q., Ye, X., Ding, W., Chen, R., Ma, T. (2017). “Design and synthesis of novel N (4)-substituted thiosemicarbazones bearing a pyrrole unit as potential anticancer agents”. Oncology letters, 13(6), 4493-4500.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Burak Yazgan 0000-0003-0717-7768

Seda Mesci 0000-0002-5440-302X

Masuk Aksahın 0000-0002-1282-5072

Arif Ayar 0000-0003-0473-4653

Melek Gül 0000-0002-0037-1202

Tuba Yıldırım 0000-0001-8575-4802

Proje Numarası FMB-BAP 18-0334
Yayımlanma Tarihi 31 Ağustos 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 14 Sayı: 2

Kaynak Göster

APA Yazgan, B., Mesci, S., Aksahın, M., Ayar, A., vd. (2021). PhTAD-Substituted Dihydropyrrole Compounds Regulate Apoptotic Cell Death in MCF-7 Cells. Erzincan University Journal of Science and Technology, 14(2), 737-750. https://doi.org/10.18185/erzifbed.894125