Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 16 Sayı: 2, 374 - 383, 31.08.2023
https://doi.org/10.18185/erzifbed.1277351

Öz

Kaynakça

  • [1] W. Kim, J.K. Kim, Y. Lim, I. Park, Y.S. Choi, J.H. Park, Tungsten oxide/PEDOT:PSS hybrid cascade hole extraction layer for polymer solar cells with enhanced long-term stability and power conversion efficiency, Sol. Energy Mater. Sol. Cells 122 (2014) 24–30.
  • [2] M. Vasilopoulou, D. Davazoglou, Hot-wire vapor deposited tungsten and molybdenum oxide films used for carrier injection/transport in organic optoelectronic devices, Mater. Sci. Semicond. 16 (2013) 1196–1216.
  • [3] Saritas, S., Kundakci, M., Coban, O., Tuzemen, S., & Yildirim, M. (2018). Ni: Fe2O3, Mg: Fe2O3 and Fe2O3 thin films gas sensor application. Physica B: Condensed Matter, 541, 14-18.
  • [4] N. Li, T. Stubhan, N.A. Luechinger, S.C. Halim, G.J. Matt, T. Ameri, C.J. Brabec, Inverted structure organic photovoltaic devices employing a low temperature solution processed WO3 anode buffer layer, Org. Electron. 13 (2012) 2479– 2484.
  • [5] T. Ripolles-Sanchis, A. Guerrero, E. Azaceta, R. Tena-Zaera, G. Garcia-Belmonte, Electrodeposited NiO anode interlayers: enhancement of the charge carrier selectivity in organic solar cells, Sol. Energy Mater. Sol. Cells 117 (2013) 564– 568.
  • [6] Turgut, E., Çoban, Ö., Sarıtaş, S., Tüzemen, S., Yıldırım, M., & Gür, E. (2018). Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors. Applied Surface Science, 435, 880-885.
  • [7] D.B. Hernandez-Uresti, D. Sánchez-Martínez, A. Martínez-de la Cruz, S. Sepúlveda-Guzmán, L.M. Torres-Martínez, Characterization and photocata- lytic properties of hexagonal and monoclinic WO3 prepared via microwave- assisted hydrothermal synthesis, Ceram. Int. 40 (2013) 9–22.
  • [8] N. Datta, N. Ramgir, M. Kaur, M. Roy, R. Bhatt, S. Kailasaganapathi, A.K. Debnath, D.K. Aswal, S.K. Gupta, Vacuum deposited WO3 thin films based sub-ppm H2S sensor, Mater. Chem. Phys. 134 (2012) 851–857.
  • [9] N. Naseri, H. Kim, W. Choi, A.Z. Moshfegh, Implementation of Ag nanoparticle incorporated WO3 thin film photoanode for hydrogen production, Int. J. Hydrog. Energy 38 (2013) 2117–2125.
  • [10] K. Sauvet, A. Rougier, L. Sauques, Electrochromic WO3 thin films active in the IR region, Sol. Energy Mater. Sol. Cells 92 (2008) 209–215.
  • [11] Cantalini, C., Sun, H. T., Faccio, M., Pelino, M., Santucci, S., Lozzi, L., & Passacantando, M. (1996). NO2 sensitivity of WO3 thin film obtained by high vacuum thermal evaporation. Sensors and Actuators B: Chemical, 31(1-2), 81-87.
  • [12] Sivakumar, R., Jayachandran, M., & Sanjeeviraja, C. (2004). Studies on the effect of substrate temperature on (VI–VI) textured tungsten oxide (WO3) thin films on glass, SnO2: F substrates by PVD: EBE technique for electrochromic devices. Materials Chemistry and Physics, 87(2-3), 439-445.
  • [13] Siciliano, T., Tepore, A., Micocci, G., Serra, A., Manno, D., & Filippo, E. (2008). WO3 gas sensors prepared by thermal oxidization of tungsten. Sensors and Actuators B: Chemical, 133(1), 321-326.
  • [14] Choi, Y. G., Sakai, G., Shimanoe, K., Miura, N., & Yamazoe, N. (2003). Wet process-prepared thick films of WO3 for NO2 sensing. Sensors and Actuators B: Chemical, 95(1-3), 258-265.
  • [15] Ederth, J., Hoel, A., Niklasson, G. A., & Granqvist, C. G. (2004). Small polaron formation in porous WO 3− x nanoparticle films. Journal of applied physics, 96(10), 5722-5726.
  • [16] Song, S. K., Cho, J. S., Choi, W. K., Jung, H. J., Choi, D., Lee, J. Y., ... & Koh, S. K. (1998). Structure and gas-sensing characteristics of undoped tin oxide thin films fabricated by ion-assisted deposition. Sensors and Actuators B: Chemical, 46(1), 42-49.
  • [17] Stankova, M., Vilanova, X., Calderer, J., Llobet, E., Brezmes, J., Gracia, I., ... & Correig, X. (2006). Sensitivity and selectivity improvement of rf sputtered WO3 microhotplate gas sensors. Sensors and Actuators B: Chemical, 113(1), 241-248.
  • [18] Rothschild, A., Edelman, F., Komem, Y., & Cosandey, F. (2000). Sensing behavior of TiO2 thin films exposed to air at low temperatures. Sensors and Actuators B: Chemical, 67(3), 282-289.

The Effect of Annealing Temperature on Iron-Doped Tungsten Oxide Structure and Photosensitive Gas Sensor Applications

Yıl 2023, Cilt: 16 Sayı: 2, 374 - 383, 31.08.2023
https://doi.org/10.18185/erzifbed.1277351

Öz

Öz
Bu çalışmada, demirin tungsten oksit yapısına katkılanması ve ardından 550oC'de tavlanması ile kristal yapı ve gaz sensör tepkisindeki değişimler incelenecektir. Absorpsiyon-dalga boyu ölçümleri sonucunda yapının hesaplanan bant aralığının 3,08-3,15 eV arasında olduğu görüldü. İnce filmlerin doğrudan optik bant aralığı enerjisi (Eg), Tauc denklemi kullanılarak hesaplanmıştır. Bant aralığındaki elektronik konfigürasyondaki değişiklik sonucunda 0,7 eV'lik bir artış gösterdi. İnce filmin ısıl işlemi sonucunda absorpsiyon miktarı ve absorpsiyon dalga boyu değişmiştir. Böylece yarı iletkenin optik bant aralığında bir genişleme meydana gelir. Püskürtme tekniği ile büyütülen WO3:Fe filmlerin X-ışını kırınım deseni yapının amorf olduğunu göstermektedir ancak havada 550 derecede tavlama sonrasında kaliteli bir polikristal yapı oluştuğu görülmektedir ki bu da SEM görüntülerinde bu sonucu desteklemektedir. WO3: Fe'nin XRD modellerinin tüm belirgin tepe noktaları, yedi belirgin tepe noktası (24o, 34o, 42o, 37.38o, 49o, 55o, 61o) sunan tungsten oksitin kübik yapısına endekslenebilir. Daha sonra, RF-DC co-sputter tekniği ile büyütülen demir katkılı tungsten oksit (WO3:Fe) yapılarının yapısal, optik ve topografik özellikleri taramalı elektron mikroskobu (SEM), atomik kuvvet mikroskobu (AFM), X- ışın kırınımı (XRD) ve UV-VIS foto spektroskopi teknikleri. RF-DC co-sputtering ile büyütülen demir katkılı tungsten oksit (WO3:Fe) metal oksit yapısının hidrojen gazına tepkisi 1000 ppm akış değerlerinde, 300 oC sıcaklıkta beyaz ışık ve karanlıkta ölçülmüştür. Tüm ölçümler aynı döngüde 300 s, 180 s ve 120 s olarak alındı. İncelenen ince filmlerin karanlıkta gaz sensörü uygulamasına uygun olduğu, beyaz ışık altında ise uygun olmadığı görülmüştür.

Kaynakça

  • [1] W. Kim, J.K. Kim, Y. Lim, I. Park, Y.S. Choi, J.H. Park, Tungsten oxide/PEDOT:PSS hybrid cascade hole extraction layer for polymer solar cells with enhanced long-term stability and power conversion efficiency, Sol. Energy Mater. Sol. Cells 122 (2014) 24–30.
  • [2] M. Vasilopoulou, D. Davazoglou, Hot-wire vapor deposited tungsten and molybdenum oxide films used for carrier injection/transport in organic optoelectronic devices, Mater. Sci. Semicond. 16 (2013) 1196–1216.
  • [3] Saritas, S., Kundakci, M., Coban, O., Tuzemen, S., & Yildirim, M. (2018). Ni: Fe2O3, Mg: Fe2O3 and Fe2O3 thin films gas sensor application. Physica B: Condensed Matter, 541, 14-18.
  • [4] N. Li, T. Stubhan, N.A. Luechinger, S.C. Halim, G.J. Matt, T. Ameri, C.J. Brabec, Inverted structure organic photovoltaic devices employing a low temperature solution processed WO3 anode buffer layer, Org. Electron. 13 (2012) 2479– 2484.
  • [5] T. Ripolles-Sanchis, A. Guerrero, E. Azaceta, R. Tena-Zaera, G. Garcia-Belmonte, Electrodeposited NiO anode interlayers: enhancement of the charge carrier selectivity in organic solar cells, Sol. Energy Mater. Sol. Cells 117 (2013) 564– 568.
  • [6] Turgut, E., Çoban, Ö., Sarıtaş, S., Tüzemen, S., Yıldırım, M., & Gür, E. (2018). Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors. Applied Surface Science, 435, 880-885.
  • [7] D.B. Hernandez-Uresti, D. Sánchez-Martínez, A. Martínez-de la Cruz, S. Sepúlveda-Guzmán, L.M. Torres-Martínez, Characterization and photocata- lytic properties of hexagonal and monoclinic WO3 prepared via microwave- assisted hydrothermal synthesis, Ceram. Int. 40 (2013) 9–22.
  • [8] N. Datta, N. Ramgir, M. Kaur, M. Roy, R. Bhatt, S. Kailasaganapathi, A.K. Debnath, D.K. Aswal, S.K. Gupta, Vacuum deposited WO3 thin films based sub-ppm H2S sensor, Mater. Chem. Phys. 134 (2012) 851–857.
  • [9] N. Naseri, H. Kim, W. Choi, A.Z. Moshfegh, Implementation of Ag nanoparticle incorporated WO3 thin film photoanode for hydrogen production, Int. J. Hydrog. Energy 38 (2013) 2117–2125.
  • [10] K. Sauvet, A. Rougier, L. Sauques, Electrochromic WO3 thin films active in the IR region, Sol. Energy Mater. Sol. Cells 92 (2008) 209–215.
  • [11] Cantalini, C., Sun, H. T., Faccio, M., Pelino, M., Santucci, S., Lozzi, L., & Passacantando, M. (1996). NO2 sensitivity of WO3 thin film obtained by high vacuum thermal evaporation. Sensors and Actuators B: Chemical, 31(1-2), 81-87.
  • [12] Sivakumar, R., Jayachandran, M., & Sanjeeviraja, C. (2004). Studies on the effect of substrate temperature on (VI–VI) textured tungsten oxide (WO3) thin films on glass, SnO2: F substrates by PVD: EBE technique for electrochromic devices. Materials Chemistry and Physics, 87(2-3), 439-445.
  • [13] Siciliano, T., Tepore, A., Micocci, G., Serra, A., Manno, D., & Filippo, E. (2008). WO3 gas sensors prepared by thermal oxidization of tungsten. Sensors and Actuators B: Chemical, 133(1), 321-326.
  • [14] Choi, Y. G., Sakai, G., Shimanoe, K., Miura, N., & Yamazoe, N. (2003). Wet process-prepared thick films of WO3 for NO2 sensing. Sensors and Actuators B: Chemical, 95(1-3), 258-265.
  • [15] Ederth, J., Hoel, A., Niklasson, G. A., & Granqvist, C. G. (2004). Small polaron formation in porous WO 3− x nanoparticle films. Journal of applied physics, 96(10), 5722-5726.
  • [16] Song, S. K., Cho, J. S., Choi, W. K., Jung, H. J., Choi, D., Lee, J. Y., ... & Koh, S. K. (1998). Structure and gas-sensing characteristics of undoped tin oxide thin films fabricated by ion-assisted deposition. Sensors and Actuators B: Chemical, 46(1), 42-49.
  • [17] Stankova, M., Vilanova, X., Calderer, J., Llobet, E., Brezmes, J., Gracia, I., ... & Correig, X. (2006). Sensitivity and selectivity improvement of rf sputtered WO3 microhotplate gas sensors. Sensors and Actuators B: Chemical, 113(1), 241-248.
  • [18] Rothschild, A., Edelman, F., Komem, Y., & Cosandey, F. (2000). Sensing behavior of TiO2 thin films exposed to air at low temperatures. Sensors and Actuators B: Chemical, 67(3), 282-289.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Sevda Sarıtaş 0000-0002-7274-3968

Erken Görünüm Tarihi 24 Ağustos 2023
Yayımlanma Tarihi 31 Ağustos 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 16 Sayı: 2

Kaynak Göster

APA Sarıtaş, S. (2023). The Effect of Annealing Temperature on Iron-Doped Tungsten Oxide Structure and Photosensitive Gas Sensor Applications. Erzincan University Journal of Science and Technology, 16(2), 374-383. https://doi.org/10.18185/erzifbed.1277351

Cited By