Yıl 2024,
Cilt: 17 Sayı: 1, 268 - 278, 28.03.2024
Fatih Karabacak
,
Özgür Taşdemir
Kaynakça
- [1] Clark J., Lomp C., Vanaja N., Wisbauer R., (2008) Lifting modules: supplements and projectivity in module theory. Springer Science & Business Media.
- [2] Behboodi M., Daneshvar A., Vedadi M. R., (2018) Virtually semisimple modules and a
generalization of the Wedderburn-Artin theorem, Comm. Algebra, 46(6), 2384-239.
- [3] Karabacak F., Koşan M. T., Quynh T. C., Taşdemir Ö., (2022) On modules and rings in which complements are isomorphic to direct summands. Comm. Algebra, 50(3), 1154- 1168.
- [4] Taşdemir Ö., Karabacak F., (2019) Generalized SIP-modules, Hacettepe J. Math. Stat. 48(4), 1137-1145.
- [5] Taşdemir Ö., Karabacak F., (2020) Generalized SSP-modules, Comm. Algebra, 48(3), 1068-1078.
- [6] Nicholson W. K., Yousif M. F., (2003) Quasi-Frobenius Rings. Cambridge Univ. Press.
- [7] Smith P. F., (1992) Modules for which every submodule has unique closure. Proceedings of the Biennial Ohio-Denison Conference 302-313.
- [8] Hadi, I.M-I., Ghawi, Th.Y., (2014) Modules with the closed sum property, International Mathematical Forum, 9(32), 1539-1551.
- [9] Khuri S. M., (1979) Endomorphism rings and lattice isomorphisms, Journal of Algebra 56(2), 401-408, 1979.
- [10] Ghorbani A., Vedadi M. R., (2009) Epi-retractable modules and some applications, Bull. Iran. Math. Soc., 35(1), 155-166.
- [11] Chatters A. W., Khuri S. M., (1980) Endomorphism rings of modules over non-singular CS rings. Journal of the London Mathematical Society, 2(3), 434-444.
- [12] Rizvi S. T., Roman C. S., (2009) On direct sums of Baer modules, Journal of Algebra, 321(2), 682-696.
- [13] Dung N. V., Huynh D. V., Smith P. F., Wisbauer R., (1994) Extending Modules, Pitman RN Mathematics, (Vol. 313). Harlow: Longman., Scientific & Technical.
- [14] Călugăreanu G., Schultz P. (2010) Modules with Abelian endomorphism rings. Bull. Aust. Math. Soc. 82(1), 99-112.
- [15] Özcan A. C., Harmanci A., Smith P. F., (2006) Duo modules, Glasg. Math. J. 48, 533- 545.
- [16] Lee G., Rizvi S. T., Roman C. S., (2010) Rickart Modules. Commun. Algebra, 38(11), 4005-4027.
- [17] Lee G., Rizvi S. T., Roman C. S., (2011) Dual Rickart modules, Commun. Algebra, 39(11), 4036-4058.
- [18] Mohamed S. H., Müller B. J., (1990) Continuous and Discrete Modules, London Math. Soc. Lecture Note Series, 147, Cambridge: Cambridge University Press.
- [19] Wisbauer R., (1991) Foundations of Module and Ring Theory, Gordon and Breach, Reading.
- [20] Nicholson W. K., Campos E. S., (2005) Morphic modules, Comm. Algebra, 33(8), 2629- 2647.
- [21] Dung N. V., (1991) Modules whose closed submodules are finitely generated. Proc. Edinb. Math. Soc. 34, 161–166.
A Research on the Generalizations of Modules Whose Submodules are Isomorphic to a Direct Summand
Yıl 2024,
Cilt: 17 Sayı: 1, 268 - 278, 28.03.2024
Fatih Karabacak
,
Özgür Taşdemir
Öz
A module M is called virtually semisimple (resp. virtually extending) if every submodule (resp. complement submodule) of M is isomorphic to a direct summand of M. It is known that virtually extending modules is a generalization of virtually semisimple modules. In this paper, the relationships between virtually extending modules and other generalizations of virtually semisimple modules are examined. Moreover, we introduce a new generalization of virtually semisimple modules; namely CH modules: We say a module M is a c-epi-retractable (or briefly CH module) if any complement submodule of M is a homomorphic image of M. CH modules contains the class of virtually extending modules and the class of epi-retractable modules. We also give some basic properties of this new module class.
Etik Beyan
There are no ethical issues regarding the publication of this study.
Destekleyen Kurum
Anadolu University Scientific Research Projects Commission
Kaynakça
- [1] Clark J., Lomp C., Vanaja N., Wisbauer R., (2008) Lifting modules: supplements and projectivity in module theory. Springer Science & Business Media.
- [2] Behboodi M., Daneshvar A., Vedadi M. R., (2018) Virtually semisimple modules and a
generalization of the Wedderburn-Artin theorem, Comm. Algebra, 46(6), 2384-239.
- [3] Karabacak F., Koşan M. T., Quynh T. C., Taşdemir Ö., (2022) On modules and rings in which complements are isomorphic to direct summands. Comm. Algebra, 50(3), 1154- 1168.
- [4] Taşdemir Ö., Karabacak F., (2019) Generalized SIP-modules, Hacettepe J. Math. Stat. 48(4), 1137-1145.
- [5] Taşdemir Ö., Karabacak F., (2020) Generalized SSP-modules, Comm. Algebra, 48(3), 1068-1078.
- [6] Nicholson W. K., Yousif M. F., (2003) Quasi-Frobenius Rings. Cambridge Univ. Press.
- [7] Smith P. F., (1992) Modules for which every submodule has unique closure. Proceedings of the Biennial Ohio-Denison Conference 302-313.
- [8] Hadi, I.M-I., Ghawi, Th.Y., (2014) Modules with the closed sum property, International Mathematical Forum, 9(32), 1539-1551.
- [9] Khuri S. M., (1979) Endomorphism rings and lattice isomorphisms, Journal of Algebra 56(2), 401-408, 1979.
- [10] Ghorbani A., Vedadi M. R., (2009) Epi-retractable modules and some applications, Bull. Iran. Math. Soc., 35(1), 155-166.
- [11] Chatters A. W., Khuri S. M., (1980) Endomorphism rings of modules over non-singular CS rings. Journal of the London Mathematical Society, 2(3), 434-444.
- [12] Rizvi S. T., Roman C. S., (2009) On direct sums of Baer modules, Journal of Algebra, 321(2), 682-696.
- [13] Dung N. V., Huynh D. V., Smith P. F., Wisbauer R., (1994) Extending Modules, Pitman RN Mathematics, (Vol. 313). Harlow: Longman., Scientific & Technical.
- [14] Călugăreanu G., Schultz P. (2010) Modules with Abelian endomorphism rings. Bull. Aust. Math. Soc. 82(1), 99-112.
- [15] Özcan A. C., Harmanci A., Smith P. F., (2006) Duo modules, Glasg. Math. J. 48, 533- 545.
- [16] Lee G., Rizvi S. T., Roman C. S., (2010) Rickart Modules. Commun. Algebra, 38(11), 4005-4027.
- [17] Lee G., Rizvi S. T., Roman C. S., (2011) Dual Rickart modules, Commun. Algebra, 39(11), 4036-4058.
- [18] Mohamed S. H., Müller B. J., (1990) Continuous and Discrete Modules, London Math. Soc. Lecture Note Series, 147, Cambridge: Cambridge University Press.
- [19] Wisbauer R., (1991) Foundations of Module and Ring Theory, Gordon and Breach, Reading.
- [20] Nicholson W. K., Campos E. S., (2005) Morphic modules, Comm. Algebra, 33(8), 2629- 2647.
- [21] Dung N. V., (1991) Modules whose closed submodules are finitely generated. Proc. Edinb. Math. Soc. 34, 161–166.