Araştırma Makalesi
BibTex RIS Kaynak Göster

Finite Difference Approach for Fourth-Order Impulsive Sturm-Liouville Boundary Value Problems

Yıl 2025, Cilt: 18 Sayı: 1, 1 - 9, 28.03.2025
https://doi.org/10.18185/erzifbed.1593935

Öz

This paper presents a finite difference method to solve a novel type fourth-order boundary value problem with impulsive conditions. These differential equations, which model deflections in beams, provide insights into various applications in fields such as civil, mechanical, and aeronautical engineering. Analytical solutions to boundary value problems are often challenging to derive, highlighting the need for robust numerical methods. In this study, a formula for finite difference approximation is derived by using Taylor series expansions at selected grid points. By transforming differential equations into algebraic systems, the unknown solutions are determined based on the grid points. The proposed method is validated through a numerical example involving a fourth-order impulsive linear boundary value problem, and the results demonstrate its effectiveness.

Kaynakça

  • [1] Faydao ̆glu, S ̧., (2019) Properties of the fourth-order boundary value problem with transmission conditions, Iranian Journal of Science and Technology, Transactions A: Science 43 2515-2522. [2] Faydao ̆glu, S ̧., Guseinov, G. Sh., (2010) An expansion result for a Sturm-Liouville eigenvalue problem with impulse, Turkish Journal of Mathematics 34 (3) 355-366. [3] Ozturk, S.N., Mukhtarov, O., Aydemir, K., (2023) Non-classical periodic boundary value problems with impulsive conditions, Journal of New Results in Science 12 (1) 1-8. [4] Mukhtarov, O. Sh., Aydemir, K., (2022) Comparison criteria for three-interval Sturm-Liouville equa- tions, Turkish Journal of Mathematics and Computer Science 14(2) 229–234.
  • [5] Faydao ̆glu, S ̧., Yakhno, V. G., (2021) Computation of the regularized Green’s function for vibration transport in two-layered rods, Journal of Modern Technology and Engineering 6 (3) 205-218.
  • [6] Zhang, N., Ao, J. J., (2023) Finite spectrum of fourth-order boundary value problems with bound- ary and transmission conditions dependent on the spectral parameter, Open Mathematics 21 (1) 20230110.
  • [7] Yaslan Karaca, I., Aksoy, S., (2022) Positive solutions for second order impulsive differential equa- tions with integral boundary conditions on an infinite interval, Miskolc Mathematical Notes 23 (1) 253–269.
  • [8] Rao, R., Jonnalagadda, J. M., (2024) Existence of a unique solution to a fourth-order boundary value problem and elastic beam analysis, Mathematical Modelling and Control 4 (3) 297–306.
  • [9] Khanfer, A., Bougo, L., (2021) On the fourth-order nonlinear beam equation of a small deflection with nonlocal conditions, AIMS Mathematics 6 (9) 9899-9910.
  • [10] Yuea, Y., Tiana, Y., Zhanga, M., Liua, J., (2018) Existence of infinitely many solutions for fourth- order impulsive differential equations, Applied Mathematics Letters 81 72-82.
  • [11] Kandemir, M., (2017) Asympotic distribution of eigenvalues for fourth-order boundary value prob- lem with discontinious coefficient and transmission conditions, Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics 66 (1) 133-152.
  • [12] Dou, J., Zhou, D., Pang, H., (2016) Existence and multiplicity of positive solutions to a fourth-order impulsive integral boundary value problem with deviating argument, Boundary Value Problems 166.
  • [13] Liu, J., Yu, W., (2021) Two solutions to Kirchhoff-type fourth-order implusive elastic beam equa- tions, Boundary Value Problems 38.
  • [14] Akbarov, S. D., Valiyev, G.J., Aliyev, S.A., Khankishiyev, Z. F., (2024) The influence of the inho- mogeneous initial stresses in the hollow cylinder containing an inviscid fluid on the dispersion of the Quasi-Scholte waves propagating in this cylinder, Applied and Computational Mathematics 23 (1) 18-39.
  • [15] Pankratov, E.L., (2020) On estimation of distribution of temperature in ventilated facades an ana- lytical approach for prognosis, Journal of Modern Technology and Engineering 5 (2) 151-156.
  • [16] Amirov, R., Durak, S., (2022) Half inverse problems for the singular Sturm-Liouville operator, International Journal of Nonlinear Analysis and Applications 13 (2) 3161–3171.
  • [17] Amirova, R., (2024) Reconstruction of the Sturm-Liouville operator from nodal data, Filomat 38 (14) 5051–5060.
  • [18] C ̧avuso ̆glu, S., Mukhtarov, O., (2022) Generalized finite difference method for solving two-interval Sturm-Liouville problems with jump conditions, Filomat 36 (13) 4505-4513.
  • [19] C ̧avuso ̆glu, S., Mukhtarov, O., (2022) Modified finite difference method for solution of two-interval boundary value problems with transition conditions, Turkish Journal of Mathematics and Computer Science 14 (1) 98-106.
  • [20] Vishwanathan, K., (2021) A medium-sized nanoclusters Au38: A numerical finite-difference method with DFTB approach, Journal of Modern Technology and Engineering 6 (2) 89-103.
  • [21] Adak, M., Mandal, A., (2021) Numerical solution of fourth-order boundary value problems for Euler- Bernoulli beam equation using FDM, Journal of Physics: Conference Series 2070 012052.
  • [22] Heidarkhani, S., Salari, A., (2019) On the fourth-order nonlinear beam equation of a small deflection with nonlocal conditions, TWMS Journal of Applied and Engineering Mathematics 9 (3) 646-657.
  • [23] Wu, B., Qiu, J., (2024) Hermite finite element method for one-dimensional fourth-order boundary value problems, Mathematics 12 (11) 1613.
  • [24] Zha, Y., Li, Z., Yi, L., (2023) Superconvergent postprocessing of the C1-conforming finite element method for fourth-order boundary value problems, Applied Numerical Mathematics 193 67-82.
  • [25] Wang, Y. M. (2017) Error analysis of a compact finite difference method forfourth-order nonlinear elliptic boundary value problems, Applied Numerical Mathematics 120 53-67.
  • [26] Yu ̈cel, M., Muhtarov, F., Mukhtarov, O., (2022) New transformation method for solving high-order boundary value problems, Journal of New Theory 40 90-100.
  • [27] Danumjaya, P., (2016) Finite element methods for one dimensional fourth order semilinear partial differential equation, International Journal of Applied and Computational Mathematics 2 395-410.

Dördüncü Mertebe İmpulsiv Sturm-Liouville Sınır Değer Problemi için Sonlu Fark Yaklaşımı

Yıl 2025, Cilt: 18 Sayı: 1, 1 - 9, 28.03.2025
https://doi.org/10.18185/erzifbed.1593935

Öz

Bu makale, impulsiv koşullara sahip yeni bir dördüncü dereceden sınır değer problemini çözmek için sonlu farklar yöntemini sunmaktadır. Kirişlerdeki sapmaları modelleyen bu diferansiyel denklemler, inşaat, makine ve havacılık mühendisliği gibi alanlardaki çeşitli uygulamaların aydınlatılmasını sağlar. Sınır değer problemlerine yönelik analitik çözümlerin elde edilmesi çoğu zaman zorlayıcıdır ve bu durum sağlam sayısal yöntemlere olan ihtiyacı vurgulamaktadır. Bu çalışmada, seçili grid noktalarında Taylor serisi açılımları kullanılarak sonlu farklar yaklaşımı için bir formül ortaya çıkarılmıştır. Diferansiyel denklemler cebirsel denklem sistemlere dönüştürülerek, bilinmeyen çözümler grid noktalarına göre belirlenmiştir. Önerilen yöntem, dördüncü dereceden impulsiv doğrusal sınır değer problemini içeren sayısal bir örnek üzerinden doğrulanmış ve sonuçlar yöntemin etkinliğini göstermiştir.

Kaynakça

  • [1] Faydao ̆glu, S ̧., (2019) Properties of the fourth-order boundary value problem with transmission conditions, Iranian Journal of Science and Technology, Transactions A: Science 43 2515-2522. [2] Faydao ̆glu, S ̧., Guseinov, G. Sh., (2010) An expansion result for a Sturm-Liouville eigenvalue problem with impulse, Turkish Journal of Mathematics 34 (3) 355-366. [3] Ozturk, S.N., Mukhtarov, O., Aydemir, K., (2023) Non-classical periodic boundary value problems with impulsive conditions, Journal of New Results in Science 12 (1) 1-8. [4] Mukhtarov, O. Sh., Aydemir, K., (2022) Comparison criteria for three-interval Sturm-Liouville equa- tions, Turkish Journal of Mathematics and Computer Science 14(2) 229–234.
  • [5] Faydao ̆glu, S ̧., Yakhno, V. G., (2021) Computation of the regularized Green’s function for vibration transport in two-layered rods, Journal of Modern Technology and Engineering 6 (3) 205-218.
  • [6] Zhang, N., Ao, J. J., (2023) Finite spectrum of fourth-order boundary value problems with bound- ary and transmission conditions dependent on the spectral parameter, Open Mathematics 21 (1) 20230110.
  • [7] Yaslan Karaca, I., Aksoy, S., (2022) Positive solutions for second order impulsive differential equa- tions with integral boundary conditions on an infinite interval, Miskolc Mathematical Notes 23 (1) 253–269.
  • [8] Rao, R., Jonnalagadda, J. M., (2024) Existence of a unique solution to a fourth-order boundary value problem and elastic beam analysis, Mathematical Modelling and Control 4 (3) 297–306.
  • [9] Khanfer, A., Bougo, L., (2021) On the fourth-order nonlinear beam equation of a small deflection with nonlocal conditions, AIMS Mathematics 6 (9) 9899-9910.
  • [10] Yuea, Y., Tiana, Y., Zhanga, M., Liua, J., (2018) Existence of infinitely many solutions for fourth- order impulsive differential equations, Applied Mathematics Letters 81 72-82.
  • [11] Kandemir, M., (2017) Asympotic distribution of eigenvalues for fourth-order boundary value prob- lem with discontinious coefficient and transmission conditions, Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics 66 (1) 133-152.
  • [12] Dou, J., Zhou, D., Pang, H., (2016) Existence and multiplicity of positive solutions to a fourth-order impulsive integral boundary value problem with deviating argument, Boundary Value Problems 166.
  • [13] Liu, J., Yu, W., (2021) Two solutions to Kirchhoff-type fourth-order implusive elastic beam equa- tions, Boundary Value Problems 38.
  • [14] Akbarov, S. D., Valiyev, G.J., Aliyev, S.A., Khankishiyev, Z. F., (2024) The influence of the inho- mogeneous initial stresses in the hollow cylinder containing an inviscid fluid on the dispersion of the Quasi-Scholte waves propagating in this cylinder, Applied and Computational Mathematics 23 (1) 18-39.
  • [15] Pankratov, E.L., (2020) On estimation of distribution of temperature in ventilated facades an ana- lytical approach for prognosis, Journal of Modern Technology and Engineering 5 (2) 151-156.
  • [16] Amirov, R., Durak, S., (2022) Half inverse problems for the singular Sturm-Liouville operator, International Journal of Nonlinear Analysis and Applications 13 (2) 3161–3171.
  • [17] Amirova, R., (2024) Reconstruction of the Sturm-Liouville operator from nodal data, Filomat 38 (14) 5051–5060.
  • [18] C ̧avuso ̆glu, S., Mukhtarov, O., (2022) Generalized finite difference method for solving two-interval Sturm-Liouville problems with jump conditions, Filomat 36 (13) 4505-4513.
  • [19] C ̧avuso ̆glu, S., Mukhtarov, O., (2022) Modified finite difference method for solution of two-interval boundary value problems with transition conditions, Turkish Journal of Mathematics and Computer Science 14 (1) 98-106.
  • [20] Vishwanathan, K., (2021) A medium-sized nanoclusters Au38: A numerical finite-difference method with DFTB approach, Journal of Modern Technology and Engineering 6 (2) 89-103.
  • [21] Adak, M., Mandal, A., (2021) Numerical solution of fourth-order boundary value problems for Euler- Bernoulli beam equation using FDM, Journal of Physics: Conference Series 2070 012052.
  • [22] Heidarkhani, S., Salari, A., (2019) On the fourth-order nonlinear beam equation of a small deflection with nonlocal conditions, TWMS Journal of Applied and Engineering Mathematics 9 (3) 646-657.
  • [23] Wu, B., Qiu, J., (2024) Hermite finite element method for one-dimensional fourth-order boundary value problems, Mathematics 12 (11) 1613.
  • [24] Zha, Y., Li, Z., Yi, L., (2023) Superconvergent postprocessing of the C1-conforming finite element method for fourth-order boundary value problems, Applied Numerical Mathematics 193 67-82.
  • [25] Wang, Y. M. (2017) Error analysis of a compact finite difference method forfourth-order nonlinear elliptic boundary value problems, Applied Numerical Mathematics 120 53-67.
  • [26] Yu ̈cel, M., Muhtarov, F., Mukhtarov, O., (2022) New transformation method for solving high-order boundary value problems, Journal of New Theory 40 90-100.
  • [27] Danumjaya, P., (2016) Finite element methods for one dimensional fourth order semilinear partial differential equation, International Journal of Applied and Computational Mathematics 2 395-410.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Uygulamalarda Dinamik Sistemler
Bölüm Makaleler
Yazarlar

Şerife Faydaoğlu 0000-0002-9690-2409

Erken Görünüm Tarihi 26 Mart 2025
Yayımlanma Tarihi 28 Mart 2025
Gönderilme Tarihi 30 Kasım 2024
Kabul Tarihi 7 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 18 Sayı: 1

Kaynak Göster

APA Faydaoğlu, Ş. (2025). Finite Difference Approach for Fourth-Order Impulsive Sturm-Liouville Boundary Value Problems. Erzincan University Journal of Science and Technology, 18(1), 1-9. https://doi.org/10.18185/erzifbed.1593935